部分错误支持知识促进稀疏贝叶斯学习。

Mohammad Shekaramiz, Todd K Moon, Jacob H Gunther
{"title":"部分错误支持知识促进稀疏贝叶斯学习。","authors":"Mohammad Shekaramiz,&nbsp;Todd K Moon,&nbsp;Jacob H Gunther","doi":"10.1109/ACSSC.2016.7869066","DOIUrl":null,"url":null,"abstract":"<p><p>Recovery of sparse signals with unknown clustering pattern in the case of having partial erroneous prior knowledge on the supports of the signal is considered. In this case, we provide a modified sparse Bayesian learning model to incorporate prior knowledge and simultaneously learn the unknown clustering pattern. For this purpose, we add one more layer to support-aided sparse Bayesian learning algorithm (SA-SBL). This layer adds a prior on the shape parameters of Gamma distributions, those modeled to account for the precision of the solution elements. We make the shape parameters depend on the total variations on the estimated supports of the solution. Based on the simulation results, we show that the proposed algorithm is able to modify its erroneous prior knowledge on the supports of the solution and learn the clustering pattern of the true signal by filtering out the incorrect supports from the estimated support set.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2016 ","pages":"389-393"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ACSSC.2016.7869066","citationCount":"4","resultStr":"{\"title\":\"SPARSE BAYESIAN LEARNING BOOSTED BY PARTIAL ERRONEOUS SUPPORT KNOWLEDGE.\",\"authors\":\"Mohammad Shekaramiz,&nbsp;Todd K Moon,&nbsp;Jacob H Gunther\",\"doi\":\"10.1109/ACSSC.2016.7869066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recovery of sparse signals with unknown clustering pattern in the case of having partial erroneous prior knowledge on the supports of the signal is considered. In this case, we provide a modified sparse Bayesian learning model to incorporate prior knowledge and simultaneously learn the unknown clustering pattern. For this purpose, we add one more layer to support-aided sparse Bayesian learning algorithm (SA-SBL). This layer adds a prior on the shape parameters of Gamma distributions, those modeled to account for the precision of the solution elements. We make the shape parameters depend on the total variations on the estimated supports of the solution. Based on the simulation results, we show that the proposed algorithm is able to modify its erroneous prior knowledge on the supports of the solution and learn the clustering pattern of the true signal by filtering out the incorrect supports from the estimated support set.</p>\",\"PeriodicalId\":72692,\"journal\":{\"name\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"volume\":\"2016 \",\"pages\":\"389-393\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ACSSC.2016.7869066\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2016.7869066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference record. Asilomar Conference on Signals, Systems & Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2016.7869066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/3/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

考虑了在信号支持上存在部分错误先验知识的情况下,具有未知聚类模式的稀疏信号的恢复问题。在这种情况下,我们提供了一个改进的稀疏贝叶斯学习模型来结合先验知识,同时学习未知的聚类模式。为此,我们增加了一层支持稀疏贝叶斯学习算法(SA-SBL)。这一层在Gamma分布的形状参数上添加了一个先验,这些分布是为了考虑解元素的精度而建模的。我们使形状参数依赖于解的估计支撑点的总变化。仿真结果表明,该算法能够修正其对解支持的错误先验知识,并通过从估计支持集中滤除错误支持来学习真实信号的聚类模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPARSE BAYESIAN LEARNING BOOSTED BY PARTIAL ERRONEOUS SUPPORT KNOWLEDGE.

Recovery of sparse signals with unknown clustering pattern in the case of having partial erroneous prior knowledge on the supports of the signal is considered. In this case, we provide a modified sparse Bayesian learning model to incorporate prior knowledge and simultaneously learn the unknown clustering pattern. For this purpose, we add one more layer to support-aided sparse Bayesian learning algorithm (SA-SBL). This layer adds a prior on the shape parameters of Gamma distributions, those modeled to account for the precision of the solution elements. We make the shape parameters depend on the total variations on the estimated supports of the solution. Based on the simulation results, we show that the proposed algorithm is able to modify its erroneous prior knowledge on the supports of the solution and learn the clustering pattern of the true signal by filtering out the incorrect supports from the estimated support set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
A novel method for 12-lead ECG reconstruction. Multilevel State-Space Models Enable High Precision Event Related Potential Analysis. Topological Knowledge Distillation for Wearable Sensor Data. A Hybrid Scattering Transform for Signals with Isolated Singularities. A mechanistically interpretable model of the retinal neural code for natural scenes with multiscale adaptive dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1