影响核移植胚胎细胞分化的因素和分子。

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Organogenesis Pub Date : 2017-10-02 DOI:10.1080/15476278.2017.1389367
Renata Simões, Arnaldo Rodrigues Santos
{"title":"影响核移植胚胎细胞分化的因素和分子。","authors":"Renata Simões,&nbsp;Arnaldo Rodrigues Santos","doi":"10.1080/15476278.2017.1389367","DOIUrl":null,"url":null,"abstract":"<p><p>Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate in normal development within an enucleated egg. Reprogramming refers to the erasing and remodeling of cellular epigenetic marks to a lower differentiation state. Somatic nuclei must be reprogrammed by factors in the oocyte cytoplasm to a rather totipotent state since the reconstructed embryo must initiate embryo development from the one cell stage to term. In embryos reconstructed by nuclear transfer, the donor genetic material must respond to the cytoplasmic environment of the cytoplast and recapitulate this normal developmental process. Enucleation is critically important for cloning efficiency because may affect the ultrastructure of the remaining cytoplast, thus resulting in a decline or destruction of its cellular compartments. Nonetheless, the effects of in vitro culturing are yet to be fully understood. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this review we discuss some factors that could impact cell differentiation in embryo generated by nuclear transfer.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"13 4","pages":"156-178"},"PeriodicalIF":1.6000,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1389367","citationCount":"3","resultStr":"{\"title\":\"Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer.\",\"authors\":\"Renata Simões,&nbsp;Arnaldo Rodrigues Santos\",\"doi\":\"10.1080/15476278.2017.1389367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate in normal development within an enucleated egg. Reprogramming refers to the erasing and remodeling of cellular epigenetic marks to a lower differentiation state. Somatic nuclei must be reprogrammed by factors in the oocyte cytoplasm to a rather totipotent state since the reconstructed embryo must initiate embryo development from the one cell stage to term. In embryos reconstructed by nuclear transfer, the donor genetic material must respond to the cytoplasmic environment of the cytoplast and recapitulate this normal developmental process. Enucleation is critically important for cloning efficiency because may affect the ultrastructure of the remaining cytoplast, thus resulting in a decline or destruction of its cellular compartments. Nonetheless, the effects of in vitro culturing are yet to be fully understood. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this review we discuss some factors that could impact cell differentiation in embryo generated by nuclear transfer.</p>\",\"PeriodicalId\":19596,\"journal\":{\"name\":\"Organogenesis\",\"volume\":\"13 4\",\"pages\":\"156-178\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2017-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15476278.2017.1389367\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organogenesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15476278.2017.1389367\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organogenesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15476278.2017.1389367","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

体细胞核移植是一种利用去核卵母细胞和供体细胞核创造胚胎的技术。体细胞的细胞核必须被重新编程,以便在去核的卵子中参与正常的发育。重编程是指将细胞表观遗传标记擦除和重塑到较低的分化状态。体细胞核必须由卵母细胞细胞质中的因子重新编程,以达到相当全能性的状态,因为重建的胚胎必须启动胚胎从一个细胞阶段到足月的发育。在通过核移植重建的胚胎中,供体遗传物质必须对细胞质的细胞质环境作出反应,并再现这一正常的发育过程。去核对克隆效率至关重要,因为它可能影响剩余细胞质的超微结构,从而导致其细胞区室的减少或破坏。尽管如此,体外培养的影响尚未得到充分了解。体外卵母细胞成熟可以影响特异性转录物的丰度,并可能消耗发育能力。在细胞分化过程中建立的表观遗传修饰是决定这种低效率的主要因素,因为它们作为表观遗传障碍限制了体细胞核的重编程。本文就影响核移植胚胎细胞分化的因素作一综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer.

Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate in normal development within an enucleated egg. Reprogramming refers to the erasing and remodeling of cellular epigenetic marks to a lower differentiation state. Somatic nuclei must be reprogrammed by factors in the oocyte cytoplasm to a rather totipotent state since the reconstructed embryo must initiate embryo development from the one cell stage to term. In embryos reconstructed by nuclear transfer, the donor genetic material must respond to the cytoplasmic environment of the cytoplast and recapitulate this normal developmental process. Enucleation is critically important for cloning efficiency because may affect the ultrastructure of the remaining cytoplast, thus resulting in a decline or destruction of its cellular compartments. Nonetheless, the effects of in vitro culturing are yet to be fully understood. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this review we discuss some factors that could impact cell differentiation in embryo generated by nuclear transfer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organogenesis
Organogenesis BIOCHEMISTRY & MOLECULAR BIOLOGY-DEVELOPMENTAL BIOLOGY
CiteScore
4.10
自引率
4.30%
发文量
6
审稿时长
>12 weeks
期刊介绍: Organogenesis is a peer-reviewed journal, available in print and online, that publishes significant advances on all aspects of organ development. The journal covers organogenesis in all multi-cellular organisms and also includes research into tissue engineering, artificial organs and organ substitutes. The overriding criteria for publication in Organogenesis are originality, scientific merit and general interest. The audience of the journal consists primarily of researchers and advanced students of anatomy, developmental biology and tissue engineering. The emphasis of the journal is on experimental papers (full-length and brief communications), but it will also publish reviews, hypotheses and commentaries. The Editors encourage the submission of addenda, which are essentially auto-commentaries on significant research recently published elsewhere with additional insights, new interpretations or speculations on a relevant topic. If you have interesting data or an original hypothesis about organ development or artificial organs, please send a pre-submission inquiry to the Editor-in-Chief. You will normally receive a reply within days. All manuscripts will be subjected to peer review, and accepted manuscripts will be posted to the electronic site of the journal immediately and will appear in print at the earliest opportunity thereafter.
期刊最新文献
Lipid Nanovesicle Platforms for Hepatocellular Carcinoma Precision Medicine Therapeutics: Progress and Perspectives. Exosomes derived from TNF-α-treated bone marrow mesenchymal stem cells ameliorate myocardial infarction injury in mice. Human Adipose Tissue-Derived Stromal Cells Ameliorate Adriamycin-Induced Nephropathy by Promoting Angiogenesis. A Review of the Risk Factors and Approaches to Prevention of Post-Reperfusion Syndrome During Liver Transplantation. Progress in the Application of Organoids-On-A-Chip in Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1