利用信任信息随时探索多武装土匪。

Kwang-Sung Jun, Robert Nowak
{"title":"利用信任信息随时探索多武装土匪。","authors":"Kwang-Sung Jun,&nbsp;Robert Nowak","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce anytime Explore-<i>m</i>, a pure exploration problem for multi-armed bandits (MAB) that requires making a prediction of the top-<i>m</i> arms at every time step. Anytime Explore-<i>m</i> is more practical than fixed budget or fixed confidence formulations of the top-<i>m</i> problem, since many applications involve a finite, but unpredictable, budget. However, the development and analysis of anytime algorithms present many challenges. We propose AT-LUCB (AnyTime Lower and Upper Confidence Bound), the first nontrivial algorithm that provably solves anytime Explore-<i>m</i>. Our analysis shows that the sample complexity of AT-LUCB is competitive to anytime variants of existing algorithms. Moreover, our empirical evaluation on AT-LUCB shows that AT-LUCB performs as well as or better than state-of-the-art baseline methods for anytime Explore-<i>m</i>.</p>","PeriodicalId":89793,"journal":{"name":"JMLR workshop and conference proceedings","volume":"48 ","pages":"974-982"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846129/pdf/nihms894213.pdf","citationCount":"0","resultStr":"{\"title\":\"Anytime Exploration for Multi-armed Bandits using Confidence Information.\",\"authors\":\"Kwang-Sung Jun,&nbsp;Robert Nowak\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce anytime Explore-<i>m</i>, a pure exploration problem for multi-armed bandits (MAB) that requires making a prediction of the top-<i>m</i> arms at every time step. Anytime Explore-<i>m</i> is more practical than fixed budget or fixed confidence formulations of the top-<i>m</i> problem, since many applications involve a finite, but unpredictable, budget. However, the development and analysis of anytime algorithms present many challenges. We propose AT-LUCB (AnyTime Lower and Upper Confidence Bound), the first nontrivial algorithm that provably solves anytime Explore-<i>m</i>. Our analysis shows that the sample complexity of AT-LUCB is competitive to anytime variants of existing algorithms. Moreover, our empirical evaluation on AT-LUCB shows that AT-LUCB performs as well as or better than state-of-the-art baseline methods for anytime Explore-<i>m</i>.</p>\",\"PeriodicalId\":89793,\"journal\":{\"name\":\"JMLR workshop and conference proceedings\",\"volume\":\"48 \",\"pages\":\"974-982\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846129/pdf/nihms894213.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMLR workshop and conference proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMLR workshop and conference proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了anytime Explore-m,这是一个针对多臂土匪(MAB)的纯探索问题,它需要在每个时间步长对最上面的m个臂进行预测。无论何时,Explore-m都比top-m问题的固定预算或固定置信度公式更实用,因为许多应用都涉及有限但不可预测的预算。然而,任意时间算法的开发和分析面临着许多挑战。我们提出了AT-LUCB (AnyTime Lower and Upper Confidence Bound)算法,这是第一个可以证明解决AnyTime Explore-m问题的非平凡算法。我们的分析表明,AT-LUCB的样本复杂度与现有算法的任何变体相比都具有竞争力。此外,我们对AT-LUCB的实证评估表明,AT-LUCB在任何时候都与最先进的基线方法一样好,甚至更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anytime Exploration for Multi-armed Bandits using Confidence Information.

We introduce anytime Explore-m, a pure exploration problem for multi-armed bandits (MAB) that requires making a prediction of the top-m arms at every time step. Anytime Explore-m is more practical than fixed budget or fixed confidence formulations of the top-m problem, since many applications involve a finite, but unpredictable, budget. However, the development and analysis of anytime algorithms present many challenges. We propose AT-LUCB (AnyTime Lower and Upper Confidence Bound), the first nontrivial algorithm that provably solves anytime Explore-m. Our analysis shows that the sample complexity of AT-LUCB is competitive to anytime variants of existing algorithms. Moreover, our empirical evaluation on AT-LUCB shows that AT-LUCB performs as well as or better than state-of-the-art baseline methods for anytime Explore-m.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Convex Multiple Sequence Alignment via Entropy-Regularized Dual Decomposition. Greedy Direction Method of Multiplier for MAP Inference of Large Output Domain. A Hybrid Causal Search Algorithm for Latent Variable Models. Doctor AI: Predicting Clinical Events via Recurrent Neural Networks. Uncovering Voice Misuse Using Symbolic Mismatch.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1