{"title":"利用信任信息随时探索多武装土匪。","authors":"Kwang-Sung Jun, Robert Nowak","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce anytime Explore-<i>m</i>, a pure exploration problem for multi-armed bandits (MAB) that requires making a prediction of the top-<i>m</i> arms at every time step. Anytime Explore-<i>m</i> is more practical than fixed budget or fixed confidence formulations of the top-<i>m</i> problem, since many applications involve a finite, but unpredictable, budget. However, the development and analysis of anytime algorithms present many challenges. We propose AT-LUCB (AnyTime Lower and Upper Confidence Bound), the first nontrivial algorithm that provably solves anytime Explore-<i>m</i>. Our analysis shows that the sample complexity of AT-LUCB is competitive to anytime variants of existing algorithms. Moreover, our empirical evaluation on AT-LUCB shows that AT-LUCB performs as well as or better than state-of-the-art baseline methods for anytime Explore-<i>m</i>.</p>","PeriodicalId":89793,"journal":{"name":"JMLR workshop and conference proceedings","volume":"48 ","pages":"974-982"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846129/pdf/nihms894213.pdf","citationCount":"0","resultStr":"{\"title\":\"Anytime Exploration for Multi-armed Bandits using Confidence Information.\",\"authors\":\"Kwang-Sung Jun, Robert Nowak\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce anytime Explore-<i>m</i>, a pure exploration problem for multi-armed bandits (MAB) that requires making a prediction of the top-<i>m</i> arms at every time step. Anytime Explore-<i>m</i> is more practical than fixed budget or fixed confidence formulations of the top-<i>m</i> problem, since many applications involve a finite, but unpredictable, budget. However, the development and analysis of anytime algorithms present many challenges. We propose AT-LUCB (AnyTime Lower and Upper Confidence Bound), the first nontrivial algorithm that provably solves anytime Explore-<i>m</i>. Our analysis shows that the sample complexity of AT-LUCB is competitive to anytime variants of existing algorithms. Moreover, our empirical evaluation on AT-LUCB shows that AT-LUCB performs as well as or better than state-of-the-art baseline methods for anytime Explore-<i>m</i>.</p>\",\"PeriodicalId\":89793,\"journal\":{\"name\":\"JMLR workshop and conference proceedings\",\"volume\":\"48 \",\"pages\":\"974-982\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846129/pdf/nihms894213.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMLR workshop and conference proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMLR workshop and conference proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们引入了anytime Explore-m,这是一个针对多臂土匪(MAB)的纯探索问题,它需要在每个时间步长对最上面的m个臂进行预测。无论何时,Explore-m都比top-m问题的固定预算或固定置信度公式更实用,因为许多应用都涉及有限但不可预测的预算。然而,任意时间算法的开发和分析面临着许多挑战。我们提出了AT-LUCB (AnyTime Lower and Upper Confidence Bound)算法,这是第一个可以证明解决AnyTime Explore-m问题的非平凡算法。我们的分析表明,AT-LUCB的样本复杂度与现有算法的任何变体相比都具有竞争力。此外,我们对AT-LUCB的实证评估表明,AT-LUCB在任何时候都与最先进的基线方法一样好,甚至更好。
Anytime Exploration for Multi-armed Bandits using Confidence Information.
We introduce anytime Explore-m, a pure exploration problem for multi-armed bandits (MAB) that requires making a prediction of the top-m arms at every time step. Anytime Explore-m is more practical than fixed budget or fixed confidence formulations of the top-m problem, since many applications involve a finite, but unpredictable, budget. However, the development and analysis of anytime algorithms present many challenges. We propose AT-LUCB (AnyTime Lower and Upper Confidence Bound), the first nontrivial algorithm that provably solves anytime Explore-m. Our analysis shows that the sample complexity of AT-LUCB is competitive to anytime variants of existing algorithms. Moreover, our empirical evaluation on AT-LUCB shows that AT-LUCB performs as well as or better than state-of-the-art baseline methods for anytime Explore-m.