通过基于高斯过程的多个移动传感器探索和完善数据。

Mohammad Shekaramiz, Todd K Moon, Jacob H Gunther
{"title":"通过基于高斯过程的多个移动传感器探索和完善数据。","authors":"Mohammad Shekaramiz, Todd K Moon, Jacob H Gunther","doi":"10.1109/ACSSC.2017.8335476","DOIUrl":null,"url":null,"abstract":"<p><p>We consider configuration of multiple mobile sensors to explore and refine knowledge in an unknown field. After some initial discovery, it is desired to collect data from the regions that are far away from the current sensor trajectories in order to favor the exploration purposes, while simultaneously, exploring the vicinity of known interesting phenomena to refine the measurements. Since the collected data only provide us with local information, there is no optimal solution to be sought for the next trajectory of sensors. Using Gaussian process regression, we provide a simple framework that accounts for both the conflicting data refinement and exploration goals, and to make reasonable decisions for the trajectories of mobile sensors.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"51 ","pages":"885-889"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918342/pdf/nihms913791.pdf","citationCount":"0","resultStr":"{\"title\":\"EXPLORATION AND DATA REFINEMENT VIA MULTIPLE MOBILE SENSORS BASED ON GAUSSIAN PROCESSES.\",\"authors\":\"Mohammad Shekaramiz, Todd K Moon, Jacob H Gunther\",\"doi\":\"10.1109/ACSSC.2017.8335476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider configuration of multiple mobile sensors to explore and refine knowledge in an unknown field. After some initial discovery, it is desired to collect data from the regions that are far away from the current sensor trajectories in order to favor the exploration purposes, while simultaneously, exploring the vicinity of known interesting phenomena to refine the measurements. Since the collected data only provide us with local information, there is no optimal solution to be sought for the next trajectory of sensors. Using Gaussian process regression, we provide a simple framework that accounts for both the conflicting data refinement and exploration goals, and to make reasonable decisions for the trajectories of mobile sensors.</p>\",\"PeriodicalId\":72692,\"journal\":{\"name\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"volume\":\"51 \",\"pages\":\"885-889\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918342/pdf/nihms913791.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2017.8335476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference record. Asilomar Conference on Signals, Systems & Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑配置多个移动传感器,以探索和完善未知领域的知识。经过初步探索后,我们希望从远离当前传感器轨迹的区域收集数据,以达到探索目的,同时探索已知有趣现象的附近区域,以完善测量结果。由于收集到的数据只能提供局部信息,因此无法为下一个传感器轨迹寻找最优解。利用高斯过程回归,我们提供了一个简单的框架,既能考虑到数据完善和探索目标之间的冲突,又能为移动传感器的轨迹做出合理的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EXPLORATION AND DATA REFINEMENT VIA MULTIPLE MOBILE SENSORS BASED ON GAUSSIAN PROCESSES.

We consider configuration of multiple mobile sensors to explore and refine knowledge in an unknown field. After some initial discovery, it is desired to collect data from the regions that are far away from the current sensor trajectories in order to favor the exploration purposes, while simultaneously, exploring the vicinity of known interesting phenomena to refine the measurements. Since the collected data only provide us with local information, there is no optimal solution to be sought for the next trajectory of sensors. Using Gaussian process regression, we provide a simple framework that accounts for both the conflicting data refinement and exploration goals, and to make reasonable decisions for the trajectories of mobile sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
A novel method for 12-lead ECG reconstruction. Multilevel State-Space Models Enable High Precision Event Related Potential Analysis. Topological Knowledge Distillation for Wearable Sensor Data. A Hybrid Scattering Transform for Signals with Isolated Singularities. A mechanistically interpretable model of the retinal neural code for natural scenes with multiscale adaptive dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1