{"title":"视网膜中的小胶质细胞:在发育、成熟和疾病中的作用。","authors":"Sean M Silverman, Wai T Wong","doi":"10.1146/annurev-vision-091517-034425","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia, the primary resident immune cell type, constitute a key population of glia in the retina. Recent evidence indicates that microglia play significant functional roles in the retina at different life stages. During development, retinal microglia regulate neuronal survival by exerting trophic influences and influencing programmed cell death. During adulthood, ramified microglia in the plexiform layers interact closely with synapses to maintain synaptic structure and function that underlie the retina's electrophysiological response to light. Under pathological conditions, retinal microglia participate in potentiating neurodegeneration in diseases such as glaucoma, retinitis pigmentosa, and age-related neurodegeneration by producing proinflammatory neurotoxic cytokines and removing living neurons via phagocytosis. Modulation of pathogenic microglial activation states and effector mechanisms has been linked to neuroprotection in animal models of retinal diseases. These findings have led to the design of early proof-of-concept clinical trials with microglial modulation as a therapeutic strategy.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"4 ","pages":"45-77"},"PeriodicalIF":5.0000,"publicationDate":"2018-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-vision-091517-034425","citationCount":"170","resultStr":"{\"title\":\"Microglia in the Retina: Roles in Development, Maturity, and Disease.\",\"authors\":\"Sean M Silverman, Wai T Wong\",\"doi\":\"10.1146/annurev-vision-091517-034425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microglia, the primary resident immune cell type, constitute a key population of glia in the retina. Recent evidence indicates that microglia play significant functional roles in the retina at different life stages. During development, retinal microglia regulate neuronal survival by exerting trophic influences and influencing programmed cell death. During adulthood, ramified microglia in the plexiform layers interact closely with synapses to maintain synaptic structure and function that underlie the retina's electrophysiological response to light. Under pathological conditions, retinal microglia participate in potentiating neurodegeneration in diseases such as glaucoma, retinitis pigmentosa, and age-related neurodegeneration by producing proinflammatory neurotoxic cytokines and removing living neurons via phagocytosis. Modulation of pathogenic microglial activation states and effector mechanisms has been linked to neuroprotection in animal models of retinal diseases. These findings have led to the design of early proof-of-concept clinical trials with microglial modulation as a therapeutic strategy.</p>\",\"PeriodicalId\":48658,\"journal\":{\"name\":\"Annual Review of Vision Science\",\"volume\":\"4 \",\"pages\":\"45-77\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2018-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-vision-091517-034425\",\"citationCount\":\"170\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-vision-091517-034425\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-091517-034425","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Microglia in the Retina: Roles in Development, Maturity, and Disease.
Microglia, the primary resident immune cell type, constitute a key population of glia in the retina. Recent evidence indicates that microglia play significant functional roles in the retina at different life stages. During development, retinal microglia regulate neuronal survival by exerting trophic influences and influencing programmed cell death. During adulthood, ramified microglia in the plexiform layers interact closely with synapses to maintain synaptic structure and function that underlie the retina's electrophysiological response to light. Under pathological conditions, retinal microglia participate in potentiating neurodegeneration in diseases such as glaucoma, retinitis pigmentosa, and age-related neurodegeneration by producing proinflammatory neurotoxic cytokines and removing living neurons via phagocytosis. Modulation of pathogenic microglial activation states and effector mechanisms has been linked to neuroprotection in animal models of retinal diseases. These findings have led to the design of early proof-of-concept clinical trials with microglial modulation as a therapeutic strategy.
期刊介绍:
The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.