{"title":"罗格列酮与福斯克林联用对SD大鼠脊髓损伤后的神经保护作用。","authors":"Qing-Qi Meng, Wei Lei, Hao Chen, Zhen-Cheng Feng, Li-Qiong Hu, Xing-Liang Zhang, Siming Li","doi":"10.1155/2018/3897478","DOIUrl":null,"url":null,"abstract":"<p><p>The peroxisome proliferator-activated receptor gamma (PPAR-<i>γ</i>) agonist rosiglitazone inhibits NF-<i>κ</i>B expression and endogenous neural stem cell differentiation into neurons and reduces the inflammatory cascade after spinal cord injury (SCI). The aim of this study was to explore the mechanisms underlying rosiglitazone-mediated neuroprotective effects and regulation of the balance between the inflammatory cascade and generation of endogenous spinal cord neurons by using a spinal cord-derived neural stem cell culture system as well as SD rat SCI model. Activation of PPAR-<i>γ</i> could promote neural stem cell proliferation and inhibit PKA expression and neuronal formation <i>in vitro.</i> In the SD rat SCI model, the rosiglitazone + forskolin group showed better locomotor recovery compared to the rosiglitazone and forskolin groups. MAP2 expression was higher in the rosiglitazone + forskolin group than in the rosiglitazone group, NF-<i>κ</i>B expression was lower in the rosiglitazone + forskolin group than in the forskolin group, and NeuN expression was higher in the rosiglitazone + forskolin group than in the forskolin group. PPAR-<i>γ</i> activation likely inhibits NF-<i>κ</i>B, thereby reducing the inflammatory cascade, and PKA activation likely promotes neuronal cell regeneration.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2018 ","pages":"3897478"},"PeriodicalIF":3.5000,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/3897478","citationCount":"8","resultStr":"{\"title\":\"Combined Rosiglitazone and Forskolin Have Neuroprotective Effects in SD Rats after Spinal Cord Injury.\",\"authors\":\"Qing-Qi Meng, Wei Lei, Hao Chen, Zhen-Cheng Feng, Li-Qiong Hu, Xing-Liang Zhang, Siming Li\",\"doi\":\"10.1155/2018/3897478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The peroxisome proliferator-activated receptor gamma (PPAR-<i>γ</i>) agonist rosiglitazone inhibits NF-<i>κ</i>B expression and endogenous neural stem cell differentiation into neurons and reduces the inflammatory cascade after spinal cord injury (SCI). The aim of this study was to explore the mechanisms underlying rosiglitazone-mediated neuroprotective effects and regulation of the balance between the inflammatory cascade and generation of endogenous spinal cord neurons by using a spinal cord-derived neural stem cell culture system as well as SD rat SCI model. Activation of PPAR-<i>γ</i> could promote neural stem cell proliferation and inhibit PKA expression and neuronal formation <i>in vitro.</i> In the SD rat SCI model, the rosiglitazone + forskolin group showed better locomotor recovery compared to the rosiglitazone and forskolin groups. MAP2 expression was higher in the rosiglitazone + forskolin group than in the rosiglitazone group, NF-<i>κ</i>B expression was lower in the rosiglitazone + forskolin group than in the forskolin group, and NeuN expression was higher in the rosiglitazone + forskolin group than in the forskolin group. PPAR-<i>γ</i> activation likely inhibits NF-<i>κ</i>B, thereby reducing the inflammatory cascade, and PKA activation likely promotes neuronal cell regeneration.</p>\",\"PeriodicalId\":20439,\"journal\":{\"name\":\"PPAR Research\",\"volume\":\"2018 \",\"pages\":\"3897478\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2018-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/3897478\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PPAR Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/3897478\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAR Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2018/3897478","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Combined Rosiglitazone and Forskolin Have Neuroprotective Effects in SD Rats after Spinal Cord Injury.
The peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist rosiglitazone inhibits NF-κB expression and endogenous neural stem cell differentiation into neurons and reduces the inflammatory cascade after spinal cord injury (SCI). The aim of this study was to explore the mechanisms underlying rosiglitazone-mediated neuroprotective effects and regulation of the balance between the inflammatory cascade and generation of endogenous spinal cord neurons by using a spinal cord-derived neural stem cell culture system as well as SD rat SCI model. Activation of PPAR-γ could promote neural stem cell proliferation and inhibit PKA expression and neuronal formation in vitro. In the SD rat SCI model, the rosiglitazone + forskolin group showed better locomotor recovery compared to the rosiglitazone and forskolin groups. MAP2 expression was higher in the rosiglitazone + forskolin group than in the rosiglitazone group, NF-κB expression was lower in the rosiglitazone + forskolin group than in the forskolin group, and NeuN expression was higher in the rosiglitazone + forskolin group than in the forskolin group. PPAR-γ activation likely inhibits NF-κB, thereby reducing the inflammatory cascade, and PKA activation likely promotes neuronal cell regeneration.
期刊介绍:
PPAR Research is a peer-reviewed, Open Access journal that publishes original research and review articles on advances in basic research focusing on mechanisms involved in the activation of peroxisome proliferator-activated receptors (PPARs), as well as their role in the regulation of cellular differentiation, development, energy homeostasis and metabolic function. The journal also welcomes preclinical and clinical trials of drugs that can modulate PPAR activity, with a view to treating chronic diseases and disorders such as dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, and obesity.