{"title":"药物递送系统在生长因子控制递送治疗神经系统损伤中的应用。","authors":"Fukai Ma, Fan Wang, Ronggang Li, Jianhong Zhu","doi":"10.1080/15476278.2018.1491183","DOIUrl":null,"url":null,"abstract":"<p><p>Nervous system injury represent the most common injury and was unique clinical challenge. Using of growth factors (GFs) for the treatment of nervous system injury showed effectiveness in halting its process. However, simple application of GFs could not achieve high efficacy because of its rapid diffusion into body fluids and lost from the lesion site. The drug delivery systems (DDSs) construction used to deliver GFs were investigated so that they could surmount its rapid diffusion and retain at the injury site. This study summarizes commonly used DDSs for sustained release of GFs that provide neuroprotection or restoration effects for nervous system injury.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"14 3","pages":"123-128"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2018.1491183","citationCount":"0","resultStr":"{\"title\":\"Application of drug delivery systems for the controlled delivery of growth factors to treat nervous system injury.\",\"authors\":\"Fukai Ma, Fan Wang, Ronggang Li, Jianhong Zhu\",\"doi\":\"10.1080/15476278.2018.1491183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nervous system injury represent the most common injury and was unique clinical challenge. Using of growth factors (GFs) for the treatment of nervous system injury showed effectiveness in halting its process. However, simple application of GFs could not achieve high efficacy because of its rapid diffusion into body fluids and lost from the lesion site. The drug delivery systems (DDSs) construction used to deliver GFs were investigated so that they could surmount its rapid diffusion and retain at the injury site. This study summarizes commonly used DDSs for sustained release of GFs that provide neuroprotection or restoration effects for nervous system injury.</p>\",\"PeriodicalId\":19596,\"journal\":{\"name\":\"Organogenesis\",\"volume\":\"14 3\",\"pages\":\"123-128\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15476278.2018.1491183\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organogenesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15476278.2018.1491183\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organogenesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15476278.2018.1491183","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Application of drug delivery systems for the controlled delivery of growth factors to treat nervous system injury.
Nervous system injury represent the most common injury and was unique clinical challenge. Using of growth factors (GFs) for the treatment of nervous system injury showed effectiveness in halting its process. However, simple application of GFs could not achieve high efficacy because of its rapid diffusion into body fluids and lost from the lesion site. The drug delivery systems (DDSs) construction used to deliver GFs were investigated so that they could surmount its rapid diffusion and retain at the injury site. This study summarizes commonly used DDSs for sustained release of GFs that provide neuroprotection or restoration effects for nervous system injury.
期刊介绍:
Organogenesis is a peer-reviewed journal, available in print and online, that publishes significant advances on all aspects of organ development. The journal covers organogenesis in all multi-cellular organisms and also includes research into tissue engineering, artificial organs and organ substitutes.
The overriding criteria for publication in Organogenesis are originality, scientific merit and general interest. The audience of the journal consists primarily of researchers and advanced students of anatomy, developmental biology and tissue engineering.
The emphasis of the journal is on experimental papers (full-length and brief communications), but it will also publish reviews, hypotheses and commentaries. The Editors encourage the submission of addenda, which are essentially auto-commentaries on significant research recently published elsewhere with additional insights, new interpretations or speculations on a relevant topic. If you have interesting data or an original hypothesis about organ development or artificial organs, please send a pre-submission inquiry to the Editor-in-Chief. You will normally receive a reply within days. All manuscripts will be subjected to peer review, and accepted manuscripts will be posted to the electronic site of the journal immediately and will appear in print at the earliest opportunity thereafter.