涉及差异复制子亚基稳定性的复制子增殖模型。

IF 1.9 4区 物理与天体物理 Q2 BIOLOGY Origins of Life and Evolution of Biospheres Pub Date : 2018-09-01 Epub Date: 2018-09-10 DOI:10.1007/s11084-018-9561-x
Zewei Li, Runhe Lyu, John Tower
{"title":"涉及差异复制子亚基稳定性的复制子增殖模型。","authors":"Zewei Li,&nbsp;Runhe Lyu,&nbsp;John Tower","doi":"10.1007/s11084-018-9561-x","DOIUrl":null,"url":null,"abstract":"<p><p>Several models for the origin of life involve molecules that are capable of self-replication, such as self-replicating polymers composed of RNA or DNA or amino acids. Here we consider a hypothetical replicator (AB) composed of two subunits, A and B. Programs written in Python and C programming languages were used to model AB replicator abundance as a function of cycles of replication (iterations), under specified hypothetical conditions. Two non-exclusive models describe how a reduced stability for B relative to A can have an advantage for replicator activity and/or evolution by generating free A subunits. In model 1, free A subunits associate with AB replicators to create AAB replicators with greater activity. In simulations, reduced stability of B was beneficial when the replication activity of AAB was greater than two times the replication activity of AB. In model 2, the free A subunit is inactive for some number of iterations before it re-creates the B subunit. A re-creates the B subunit with an equal chance of creating B or B', where B' is a mutant that increases AB' replicator activity relative to AB. In simulations, at moderate number of iterations (< 15), a shorter survival time for B is beneficial when the stability of B is greater than the inactive time of A. The results are consistent with the hypothesis that reduced stability for a replicator subunit can be advantageous under appropriate conditions.</p>","PeriodicalId":19614,"journal":{"name":"Origins of Life and Evolution of Biospheres","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11084-018-9561-x","citationCount":"2","resultStr":"{\"title\":\"Models of Replicator Proliferation Involving Differential Replicator Subunit Stability.\",\"authors\":\"Zewei Li,&nbsp;Runhe Lyu,&nbsp;John Tower\",\"doi\":\"10.1007/s11084-018-9561-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several models for the origin of life involve molecules that are capable of self-replication, such as self-replicating polymers composed of RNA or DNA or amino acids. Here we consider a hypothetical replicator (AB) composed of two subunits, A and B. Programs written in Python and C programming languages were used to model AB replicator abundance as a function of cycles of replication (iterations), under specified hypothetical conditions. Two non-exclusive models describe how a reduced stability for B relative to A can have an advantage for replicator activity and/or evolution by generating free A subunits. In model 1, free A subunits associate with AB replicators to create AAB replicators with greater activity. In simulations, reduced stability of B was beneficial when the replication activity of AAB was greater than two times the replication activity of AB. In model 2, the free A subunit is inactive for some number of iterations before it re-creates the B subunit. A re-creates the B subunit with an equal chance of creating B or B', where B' is a mutant that increases AB' replicator activity relative to AB. In simulations, at moderate number of iterations (< 15), a shorter survival time for B is beneficial when the stability of B is greater than the inactive time of A. The results are consistent with the hypothesis that reduced stability for a replicator subunit can be advantageous under appropriate conditions.</p>\",\"PeriodicalId\":19614,\"journal\":{\"name\":\"Origins of Life and Evolution of Biospheres\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11084-018-9561-x\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Origins of Life and Evolution of Biospheres\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11084-018-9561-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/9/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of Life and Evolution of Biospheres","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11084-018-9561-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

生命起源的几个模型涉及到能够自我复制的分子,例如由RNA、DNA或氨基酸组成的自我复制聚合物。在这里,我们考虑一个由a和b两个亚基组成的假设复制子(AB)。在指定的假设条件下,用Python和C编程语言编写的程序将AB复制子的丰度建模为复制周期(迭代)的函数。两个非排他模型描述了B相对于a的稳定性降低如何通过产生自由的a亚基而对复制子活性和/或进化具有优势。在模型1中,自由的A亚基与AB复制子相关联,以创建具有更大活性的AAB复制子。在模拟中,当AAB的复制活性大于AB的复制活性的两倍时,降低B的稳定性是有益的。在模型2中,在重新创建B亚基之前,自由的A亚基在一定次数的迭代中处于非活性状态。A以相同的机会重建B亚基,产生B或B',其中B'是相对于AB增加AB'复制子活性的突变体。在模拟中,在中等迭代次数(< 15)下,当B的稳定性大于A的失活时间时,较短的B存活时间是有益的。结果与假设一致,即在适当的条件下,降低复制子亚基的稳定性可能是有利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Models of Replicator Proliferation Involving Differential Replicator Subunit Stability.

Several models for the origin of life involve molecules that are capable of self-replication, such as self-replicating polymers composed of RNA or DNA or amino acids. Here we consider a hypothetical replicator (AB) composed of two subunits, A and B. Programs written in Python and C programming languages were used to model AB replicator abundance as a function of cycles of replication (iterations), under specified hypothetical conditions. Two non-exclusive models describe how a reduced stability for B relative to A can have an advantage for replicator activity and/or evolution by generating free A subunits. In model 1, free A subunits associate with AB replicators to create AAB replicators with greater activity. In simulations, reduced stability of B was beneficial when the replication activity of AAB was greater than two times the replication activity of AB. In model 2, the free A subunit is inactive for some number of iterations before it re-creates the B subunit. A re-creates the B subunit with an equal chance of creating B or B', where B' is a mutant that increases AB' replicator activity relative to AB. In simulations, at moderate number of iterations (< 15), a shorter survival time for B is beneficial when the stability of B is greater than the inactive time of A. The results are consistent with the hypothesis that reduced stability for a replicator subunit can be advantageous under appropriate conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
15.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: The subject of the origin and early evolution of life is an inseparable part of the general discipline of Astrobiology. The journal Origins of Life and Evolution of Biospheres places special importance on the interconnection as well as the interdisciplinary nature of these fields, as is reflected in its subject coverage. While any scientific study which contributes to our understanding of the origins, evolution and distribution of life in the Universe is suitable for inclusion in the journal, some examples of important areas of interest are: prebiotic chemistry and the nature of Earth''s early environment, self-replicating and self-organizing systems, the theory of the RNA world and of other possible precursor systems, and the problem of the origin of the genetic code. Early evolution of life - as revealed by such techniques as the elucidation of biochemical pathways, molecular phylogeny, the study of Precambrian sediments and fossils and of major innovations in microbial evolution - forms a second focus. As a larger and more general context for these areas, Astrobiology refers to the origin and evolution of life in a cosmic setting, and includes interstellar chemistry, planetary atmospheres and habitable zones, the organic chemistry of comets, meteorites, asteroids and other small bodies, biological adaptation to extreme environments, life detection and related areas. Experimental papers, theoretical articles and authorative literature reviews are all appropriate forms for submission to the journal. In the coming years, Astrobiology will play an even greater role in defining the journal''s coverage and keeping Origins of Life and Evolution of Biospheres well-placed in this growing interdisciplinary field.
期刊最新文献
Adaptability, stability, and productivity of potato breeding clones and cultivars at high latitudes in Europe The effect of some vegetable origin oils used in different clove varieties against Meloidogyne incognita Plant growth and physiological responses of the invasive plant Acmella radicans to contrasting light and soil water conditions Therapeutic switching of metronidazole anti-cancerous compounds as anti SARS-COV-2 inhibitors: integration of QSAR, molecular docking, MD simulation and ADMET analysis Identification of climatic and management factors influencing wheat’s yield variability using AgMERRA dataset and DSSAT model across a temperate region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1