吡格列酮对构型雄甾受体表达缺失的非酒精性脂肪肝的影响。

IF 3.5 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL PPAR Research Pub Date : 2018-09-27 eCollection Date: 2018-01-01 DOI:10.1155/2018/9568269
Hwa Young Ahn, Hwan Hee Kim, Ji-Yeon Hwang, Changhun Park, Bo Youn Cho, Young Joo Park
{"title":"吡格列酮对构型雄甾受体表达缺失的非酒精性脂肪肝的影响。","authors":"Hwa Young Ahn,&nbsp;Hwan Hee Kim,&nbsp;Ji-Yeon Hwang,&nbsp;Changhun Park,&nbsp;Bo Youn Cho,&nbsp;Young Joo Park","doi":"10.1155/2018/9568269","DOIUrl":null,"url":null,"abstract":"<p><p>Nonalcoholic fatty liver disease or steatohepatitis (NAFLD/NASH) is a fatty liver disease that is closely related to obesity, diabetes, and dyslipidemia. Pioglitazone, which was developed as an antidiabetic drug, is known to improve NALFD. Pioglitazone is metabolized by multiple cytochrome P450 (CYP) enzymes, which are regulated by the xenobiotic receptor constitutive androstane receptor (CAR). In this study, we investigated the effects of pioglitazone on NAFLD by absence of CAR activity under high-fat (HF)-fed conditions. CAR<sup>-/-</sup> mice showed significant improvement in NALFD after 12 weeks of pioglitazone treatment compared to wild-type mice. This improvement in NAFLD persisted in CAR<sup>-/-</sup> mice regardless of blood pioglitazone concentration. The expression of lipogenesis genes in the liver, sterol-regulatory element binding protein-1c (SREBP-1c), and stearoyl-CoA desaturase (SCD)-1 was decreased after pioglitazone treatment in HF-fed CAR<sup>-/-</sup> mice. In addition, the expression of peroxisome proliferator-activated receptor gamma 2 (PPAR<i>γ</i>2) was decreased by pioglitazone in HF-fed CAR<sup>-/-</sup> mice. Changes in SREBP-1c and PPAR <i>γ</i>2 remained constant over short-term (6 h) pioglitazone and lipid injection. Our results showed that NAFLD was improved significantly by pioglitazone in a CAR deletion state. These results might be valuable because they suggest that interaction with CAR and pioglitazone/PPAR<i>γ</i>2 may be important in regulating gene expression associated with NAFLD.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2018 ","pages":"9568269"},"PeriodicalIF":3.5000,"publicationDate":"2018-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9568269","citationCount":"14","resultStr":"{\"title\":\"Effects of Pioglitazone on Nonalcoholic Fatty Liver Disease in the Absence of Constitutive Androstane Receptor Expression.\",\"authors\":\"Hwa Young Ahn,&nbsp;Hwan Hee Kim,&nbsp;Ji-Yeon Hwang,&nbsp;Changhun Park,&nbsp;Bo Youn Cho,&nbsp;Young Joo Park\",\"doi\":\"10.1155/2018/9568269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nonalcoholic fatty liver disease or steatohepatitis (NAFLD/NASH) is a fatty liver disease that is closely related to obesity, diabetes, and dyslipidemia. Pioglitazone, which was developed as an antidiabetic drug, is known to improve NALFD. Pioglitazone is metabolized by multiple cytochrome P450 (CYP) enzymes, which are regulated by the xenobiotic receptor constitutive androstane receptor (CAR). In this study, we investigated the effects of pioglitazone on NAFLD by absence of CAR activity under high-fat (HF)-fed conditions. CAR<sup>-/-</sup> mice showed significant improvement in NALFD after 12 weeks of pioglitazone treatment compared to wild-type mice. This improvement in NAFLD persisted in CAR<sup>-/-</sup> mice regardless of blood pioglitazone concentration. The expression of lipogenesis genes in the liver, sterol-regulatory element binding protein-1c (SREBP-1c), and stearoyl-CoA desaturase (SCD)-1 was decreased after pioglitazone treatment in HF-fed CAR<sup>-/-</sup> mice. In addition, the expression of peroxisome proliferator-activated receptor gamma 2 (PPAR<i>γ</i>2) was decreased by pioglitazone in HF-fed CAR<sup>-/-</sup> mice. Changes in SREBP-1c and PPAR <i>γ</i>2 remained constant over short-term (6 h) pioglitazone and lipid injection. Our results showed that NAFLD was improved significantly by pioglitazone in a CAR deletion state. These results might be valuable because they suggest that interaction with CAR and pioglitazone/PPAR<i>γ</i>2 may be important in regulating gene expression associated with NAFLD.</p>\",\"PeriodicalId\":20439,\"journal\":{\"name\":\"PPAR Research\",\"volume\":\"2018 \",\"pages\":\"9568269\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2018-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/9568269\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PPAR Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/9568269\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAR Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2018/9568269","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 14

摘要

非酒精性脂肪性肝病或脂肪性肝炎(NAFLD/NASH)是一种与肥胖、糖尿病和血脂异常密切相关的脂肪肝疾病。作为抗糖尿病药物开发的吡格列酮可以改善NALFD。吡格列酮由多种细胞色素P450 (CYP)酶代谢,这些酶受异种受体组成型雄烷受体(CAR)的调节。在这项研究中,我们研究了吡格列酮对高脂肪(HF)喂养条件下缺乏CAR活性的NAFLD的影响。与野生型小鼠相比,CAR-/-小鼠在吡格列酮治疗12周后NALFD有显著改善。无论血液中吡格列酮浓度如何,CAR-/-小鼠NAFLD的改善持续存在。经吡格列酮治疗的CAR-/-小鼠肝脏脂肪生成基因、胆固醇调节元件结合蛋白-1c (SREBP-1c)和硬脂酰辅酶a去饱和酶(SCD)-1的表达降低。此外,吡格列酮可降低hf喂养的CAR-/-小鼠过氧化物酶体增殖物激活受体γ - 2 (ppar γ - 2)的表达。SREBP-1c和PPAR γ2在短期内(6小时)注射吡格列酮和脂质后保持不变。我们的结果显示,在CAR缺失状态下,吡格列酮显著改善了NAFLD。这些结果可能是有价值的,因为它们表明CAR和吡格列酮/PPARγ2的相互作用可能在调节与NAFLD相关的基因表达中很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Pioglitazone on Nonalcoholic Fatty Liver Disease in the Absence of Constitutive Androstane Receptor Expression.

Nonalcoholic fatty liver disease or steatohepatitis (NAFLD/NASH) is a fatty liver disease that is closely related to obesity, diabetes, and dyslipidemia. Pioglitazone, which was developed as an antidiabetic drug, is known to improve NALFD. Pioglitazone is metabolized by multiple cytochrome P450 (CYP) enzymes, which are regulated by the xenobiotic receptor constitutive androstane receptor (CAR). In this study, we investigated the effects of pioglitazone on NAFLD by absence of CAR activity under high-fat (HF)-fed conditions. CAR-/- mice showed significant improvement in NALFD after 12 weeks of pioglitazone treatment compared to wild-type mice. This improvement in NAFLD persisted in CAR-/- mice regardless of blood pioglitazone concentration. The expression of lipogenesis genes in the liver, sterol-regulatory element binding protein-1c (SREBP-1c), and stearoyl-CoA desaturase (SCD)-1 was decreased after pioglitazone treatment in HF-fed CAR-/- mice. In addition, the expression of peroxisome proliferator-activated receptor gamma 2 (PPARγ2) was decreased by pioglitazone in HF-fed CAR-/- mice. Changes in SREBP-1c and PPAR γ2 remained constant over short-term (6 h) pioglitazone and lipid injection. Our results showed that NAFLD was improved significantly by pioglitazone in a CAR deletion state. These results might be valuable because they suggest that interaction with CAR and pioglitazone/PPARγ2 may be important in regulating gene expression associated with NAFLD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PPAR Research
PPAR Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.20
自引率
3.40%
发文量
17
审稿时长
12 months
期刊介绍: PPAR Research is a peer-reviewed, Open Access journal that publishes original research and review articles on advances in basic research focusing on mechanisms involved in the activation of peroxisome proliferator-activated receptors (PPARs), as well as their role in the regulation of cellular differentiation, development, energy homeostasis and metabolic function. The journal also welcomes preclinical and clinical trials of drugs that can modulate PPAR activity, with a view to treating chronic diseases and disorders such as dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, and obesity.
期刊最新文献
Systemic and Lung Inflammation and Oxidative Stress Associated With Behavioral Changes Induced by Inhaled Paraquat Are Ameliorated by Carvacrol. Interaction between Nuclear Receptor and Alpha-Adrenergic Agonist Subtypes in Metabolism and Systemic Hemodynamics of Spontaneously Hypertensive Rats. Shared Mechanisms in Pparγ1sv and Pparγ2 Expression in 3T3-L1 Cells: Studies on Epigenetic and Positive Feedback Regulation of Pparγ during Adipogenesis. PPARG and the PTEN-PI3K/AKT Signaling Axis May Cofunction in Promoting Chemosensitivity in Hypopharyngeal Squamous Cell Carcinoma Peroxisome Proliferator-Activated Receptor γ Regulates Lipid Metabolism in Sheep Trophoblast Cells through mTOR Pathway-Mediated Autophagy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1