{"title":"红细胞体外再生来源及方法的研究进展","authors":"Shuming Sun , Yuanliang Peng , Jing Liu","doi":"10.1016/j.cr.2018.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Erythrocytes (red blood cells, RBCs) facilitate gas exchange in the lungs and transport oxygen to the tissues. The human body must maintain erythrocyte regeneration to support metabolically active cells and tissues. In many hematological diseases, erythrocyte regeneration is impaired. Researchers have studied erythrocyte regeneration for many years both <em>in vivo</em> and <em>in vitro</em>. In this review, we summarize the sources and main culture methods for generating mature and functional red blood cells <em>in vitro</em>. Hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are classic sources for erythrocyte regeneration. In addition, alternative sources such as immortalized adult human erythroid cell lines and transformed fibroblasts have also been generated and have produced functional red blood cells. The culture systems for erythrocytes differ among laboratories. Researchers hope that improvements in culture techniques may contribute to improved RBC outcomes for blood transfusions, drug delivery and the treatment of hematological diseases.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"7 2","pages":"Pages 45-49"},"PeriodicalIF":4.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cr.2018.10.001","citationCount":"13","resultStr":"{\"title\":\"Research advances in erythrocyte regeneration sources and methods in vitro\",\"authors\":\"Shuming Sun , Yuanliang Peng , Jing Liu\",\"doi\":\"10.1016/j.cr.2018.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Erythrocytes (red blood cells, RBCs) facilitate gas exchange in the lungs and transport oxygen to the tissues. The human body must maintain erythrocyte regeneration to support metabolically active cells and tissues. In many hematological diseases, erythrocyte regeneration is impaired. Researchers have studied erythrocyte regeneration for many years both <em>in vivo</em> and <em>in vitro</em>. In this review, we summarize the sources and main culture methods for generating mature and functional red blood cells <em>in vitro</em>. Hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are classic sources for erythrocyte regeneration. In addition, alternative sources such as immortalized adult human erythroid cell lines and transformed fibroblasts have also been generated and have produced functional red blood cells. The culture systems for erythrocytes differ among laboratories. Researchers hope that improvements in culture techniques may contribute to improved RBC outcomes for blood transfusions, drug delivery and the treatment of hematological diseases.</p></div>\",\"PeriodicalId\":9811,\"journal\":{\"name\":\"Cell Regeneration\",\"volume\":\"7 2\",\"pages\":\"Pages 45-49\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cr.2018.10.001\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2045976918300117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2045976918300117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Research advances in erythrocyte regeneration sources and methods in vitro
Erythrocytes (red blood cells, RBCs) facilitate gas exchange in the lungs and transport oxygen to the tissues. The human body must maintain erythrocyte regeneration to support metabolically active cells and tissues. In many hematological diseases, erythrocyte regeneration is impaired. Researchers have studied erythrocyte regeneration for many years both in vivo and in vitro. In this review, we summarize the sources and main culture methods for generating mature and functional red blood cells in vitro. Hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are classic sources for erythrocyte regeneration. In addition, alternative sources such as immortalized adult human erythroid cell lines and transformed fibroblasts have also been generated and have produced functional red blood cells. The culture systems for erythrocytes differ among laboratories. Researchers hope that improvements in culture techniques may contribute to improved RBC outcomes for blood transfusions, drug delivery and the treatment of hematological diseases.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine