运动性疲劳的神经免疫学和神经能量方面。

IF 3.5 4区 医学 Q2 IMMUNOLOGY Exercise Immunology Review Pub Date : 2019-01-01
Sebastian Proschinger, Jens Freese
{"title":"运动性疲劳的神经免疫学和神经能量方面。","authors":"Sebastian Proschinger,&nbsp;Jens Freese","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Feelings of fatigue not only occur in chronic and acute disease states, but also during prolonged strenuous exercise as a symptom of exhaustion. The underlying mechanisms of fatigue in diseases seem to rely on neuroinflammatory pathways. These pathways are interesting to understand exerciseinduced fatigue regarding immune system to brain signaling and effects of cerebral cytokines. Activation of the immune system incurs a high-energy cost, also in the brain. In consequence immune cells have high energetic priority over other tissues, such as neurons. A neuronal inactivation and corresponding changes in neurotransmission can also be induced by end products of ATP metabolism and elicit feelings of fatigue in diseases and after intensive and prolonged exercise bouts. Since there are no existing models of exercise-induced fatigue that specifically address interactions between neuroimmunologic mechanisms and neuroenergetics, this article is combining scientific evidence across a broad range of disciplines in order to propose an inflammation- and energy-based model for exercise-induced fatigue.</p>","PeriodicalId":50468,"journal":{"name":"Exercise Immunology Review","volume":"25 ","pages":"8-19"},"PeriodicalIF":3.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroimmunological and neuroenergetic aspects in exercise-induced fatigue.\",\"authors\":\"Sebastian Proschinger,&nbsp;Jens Freese\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Feelings of fatigue not only occur in chronic and acute disease states, but also during prolonged strenuous exercise as a symptom of exhaustion. The underlying mechanisms of fatigue in diseases seem to rely on neuroinflammatory pathways. These pathways are interesting to understand exerciseinduced fatigue regarding immune system to brain signaling and effects of cerebral cytokines. Activation of the immune system incurs a high-energy cost, also in the brain. In consequence immune cells have high energetic priority over other tissues, such as neurons. A neuronal inactivation and corresponding changes in neurotransmission can also be induced by end products of ATP metabolism and elicit feelings of fatigue in diseases and after intensive and prolonged exercise bouts. Since there are no existing models of exercise-induced fatigue that specifically address interactions between neuroimmunologic mechanisms and neuroenergetics, this article is combining scientific evidence across a broad range of disciplines in order to propose an inflammation- and energy-based model for exercise-induced fatigue.</p>\",\"PeriodicalId\":50468,\"journal\":{\"name\":\"Exercise Immunology Review\",\"volume\":\"25 \",\"pages\":\"8-19\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exercise Immunology Review\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exercise Immunology Review","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

疲劳的感觉不仅发生在慢性和急性疾病状态,而且在长时间的剧烈运动中也作为疲劳的症状出现。疾病中疲劳的潜在机制似乎依赖于神经炎症途径。这些途径对于了解运动引起的疲劳与免疫系统对大脑信号和脑细胞因子的影响是很有趣的。激活免疫系统需要消耗能量,大脑也是如此。因此,免疫细胞比其他组织(如神经元)具有更高的能量优先权。ATP代谢的最终产物也可以诱导神经元失活和相应的神经传递变化,并引起疾病和长时间剧烈运动后的疲劳感觉。由于目前还没有专门针对神经免疫机制和神经能量学之间相互作用的运动诱导疲劳模型,因此本文结合了广泛学科的科学证据,提出了一个基于炎症和能量的运动诱导疲劳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuroimmunological and neuroenergetic aspects in exercise-induced fatigue.

Feelings of fatigue not only occur in chronic and acute disease states, but also during prolonged strenuous exercise as a symptom of exhaustion. The underlying mechanisms of fatigue in diseases seem to rely on neuroinflammatory pathways. These pathways are interesting to understand exerciseinduced fatigue regarding immune system to brain signaling and effects of cerebral cytokines. Activation of the immune system incurs a high-energy cost, also in the brain. In consequence immune cells have high energetic priority over other tissues, such as neurons. A neuronal inactivation and corresponding changes in neurotransmission can also be induced by end products of ATP metabolism and elicit feelings of fatigue in diseases and after intensive and prolonged exercise bouts. Since there are no existing models of exercise-induced fatigue that specifically address interactions between neuroimmunologic mechanisms and neuroenergetics, this article is combining scientific evidence across a broad range of disciplines in order to propose an inflammation- and energy-based model for exercise-induced fatigue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Exercise Immunology Review
Exercise Immunology Review 医学-免疫学
CiteScore
16.00
自引率
0.00%
发文量
7
期刊介绍: Exercise Immunology Review (EIR) serves as the official publication of the International Society of Exercise and Immunology and the German Society of Sports Medicine and Prevention. It is dedicated to advancing knowledge in all areas of immunology relevant to acute exercise and regular physical activity. EIR publishes review articles and papers containing new, original data along with extensive review-like discussions. Recognizing the diverse disciplines contributing to the understanding of immune function, the journal adopts an interdisciplinary approach, facilitating the dissemination of research findings from fields such as exercise sciences, medicine, immunology, physiology, behavioral science, endocrinology, pharmacology, and psychology.
期刊最新文献
Higher risk of upper respiratory tract infection post marathon running: when physical exercise becomes a threat to the immune system. Immune Response to COVID-19 Vaccination in Elite Athletes. Investigating the impact of exercise on T and NK cells in skin cancer: a systematic review. Involvement of neutrophils and macrophages in exhaustive exercise-induced liver, kidney, heart, and lung injuries. Unleashing anti-tumour immunity: dietary restriction and exercise interventions adjunct to chemotherapy for cancer patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1