{"title":"利用大型动物模型研究亨廷顿氏病","authors":"Sen Yan , Shihua Li , Xiao-Jiang Li","doi":"10.1016/j.cr.2019.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Animal models that can mimic human diseases are the important tools for investigating the pathogenesis of the diseases and finding a way for treatment. There is no doubt that small animal models have provided a wealth of information regarding disease pathogenesis and also offered widely used tools to develop therapeutic strategies. Rodent models have been very valuable for investigators to understand the mechanisms underlying misfolded protein-mediated neuronal dysfunction and behavioral phenotypes in a variety of neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's diseases (HD). However, most of genetically modified rodent models of these diseases lack the overt and selective neurodegeneration seen in the patient brains. Since large animals are more similar to humans than small animals and rodents, the large animal models are likely to mimic important neuropathological features in humans. Here we discuss the application of large animal models in neurodegenerative disease research with focus on the HD large animal models, aiming to provide insight into the application of animal models to study neurodegenerative diseases.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"8 1","pages":"Pages 9-11"},"PeriodicalIF":4.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cr.2019.01.001","citationCount":"7","resultStr":"{\"title\":\"Use of large animal models to investigate Huntington's diseases\",\"authors\":\"Sen Yan , Shihua Li , Xiao-Jiang Li\",\"doi\":\"10.1016/j.cr.2019.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Animal models that can mimic human diseases are the important tools for investigating the pathogenesis of the diseases and finding a way for treatment. There is no doubt that small animal models have provided a wealth of information regarding disease pathogenesis and also offered widely used tools to develop therapeutic strategies. Rodent models have been very valuable for investigators to understand the mechanisms underlying misfolded protein-mediated neuronal dysfunction and behavioral phenotypes in a variety of neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's diseases (HD). However, most of genetically modified rodent models of these diseases lack the overt and selective neurodegeneration seen in the patient brains. Since large animals are more similar to humans than small animals and rodents, the large animal models are likely to mimic important neuropathological features in humans. Here we discuss the application of large animal models in neurodegenerative disease research with focus on the HD large animal models, aiming to provide insight into the application of animal models to study neurodegenerative diseases.</p></div>\",\"PeriodicalId\":9811,\"journal\":{\"name\":\"Cell Regeneration\",\"volume\":\"8 1\",\"pages\":\"Pages 9-11\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cr.2019.01.001\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2045976918300208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2045976918300208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Use of large animal models to investigate Huntington's diseases
Animal models that can mimic human diseases are the important tools for investigating the pathogenesis of the diseases and finding a way for treatment. There is no doubt that small animal models have provided a wealth of information regarding disease pathogenesis and also offered widely used tools to develop therapeutic strategies. Rodent models have been very valuable for investigators to understand the mechanisms underlying misfolded protein-mediated neuronal dysfunction and behavioral phenotypes in a variety of neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's diseases (HD). However, most of genetically modified rodent models of these diseases lack the overt and selective neurodegeneration seen in the patient brains. Since large animals are more similar to humans than small animals and rodents, the large animal models are likely to mimic important neuropathological features in humans. Here we discuss the application of large animal models in neurodegenerative disease research with focus on the HD large animal models, aiming to provide insight into the application of animal models to study neurodegenerative diseases.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine