Cheng Zhu, Andrew J Pascall, Nikola Dudukovic, Marcus A Worsley, Joshua D Kuntz, Eric B Duoss, Christopher M Spadaccini
{"title":"胶体材料用于3D打印。","authors":"Cheng Zhu, Andrew J Pascall, Nikola Dudukovic, Marcus A Worsley, Joshua D Kuntz, Eric B Duoss, Christopher M Spadaccini","doi":"10.1146/annurev-chembioeng-060718-030133","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, 3D printing has led to a disruptive manufacturing revolution that allows complex architected materials and structures to be created by directly joining sequential layers into designed 3D components. However, customized feedstocks for specific 3D printing techniques and applications are limited or nonexistent, which greatly impedes the production of desired structural or functional materials. Colloids, with their stable biphasic nature, have tremendous potential to satisfy the requirements of various 3D printing methods owing to their tunable electrical, optical, mechanical, and rheological properties. This enables materials delivery and assembly across the multiple length scales required for multifunctionality. Here, a state-of-the-art review on advanced colloidal processing strategies for 3D printing of organic, ceramic, metallic, and carbonaceous materials is provided. It is believed that the concomitant innovations in colloid design and 3D printing will provide numerous possibilities for the fabrication of new constructs unobtainable using traditional methods, which will significantly broaden their applications.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"10 ","pages":"17-42"},"PeriodicalIF":7.6000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-chembioeng-060718-030133","citationCount":"40","resultStr":"{\"title\":\"Colloidal Materials for 3D Printing.\",\"authors\":\"Cheng Zhu, Andrew J Pascall, Nikola Dudukovic, Marcus A Worsley, Joshua D Kuntz, Eric B Duoss, Christopher M Spadaccini\",\"doi\":\"10.1146/annurev-chembioeng-060718-030133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, 3D printing has led to a disruptive manufacturing revolution that allows complex architected materials and structures to be created by directly joining sequential layers into designed 3D components. However, customized feedstocks for specific 3D printing techniques and applications are limited or nonexistent, which greatly impedes the production of desired structural or functional materials. Colloids, with their stable biphasic nature, have tremendous potential to satisfy the requirements of various 3D printing methods owing to their tunable electrical, optical, mechanical, and rheological properties. This enables materials delivery and assembly across the multiple length scales required for multifunctionality. Here, a state-of-the-art review on advanced colloidal processing strategies for 3D printing of organic, ceramic, metallic, and carbonaceous materials is provided. It is believed that the concomitant innovations in colloid design and 3D printing will provide numerous possibilities for the fabrication of new constructs unobtainable using traditional methods, which will significantly broaden their applications.</p>\",\"PeriodicalId\":8234,\"journal\":{\"name\":\"Annual review of chemical and biomolecular engineering\",\"volume\":\"10 \",\"pages\":\"17-42\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-chembioeng-060718-030133\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of chemical and biomolecular engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-chembioeng-060718-030133\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-060718-030133","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
In recent years, 3D printing has led to a disruptive manufacturing revolution that allows complex architected materials and structures to be created by directly joining sequential layers into designed 3D components. However, customized feedstocks for specific 3D printing techniques and applications are limited or nonexistent, which greatly impedes the production of desired structural or functional materials. Colloids, with their stable biphasic nature, have tremendous potential to satisfy the requirements of various 3D printing methods owing to their tunable electrical, optical, mechanical, and rheological properties. This enables materials delivery and assembly across the multiple length scales required for multifunctionality. Here, a state-of-the-art review on advanced colloidal processing strategies for 3D printing of organic, ceramic, metallic, and carbonaceous materials is provided. It is believed that the concomitant innovations in colloid design and 3D printing will provide numerous possibilities for the fabrication of new constructs unobtainable using traditional methods, which will significantly broaden their applications.
期刊介绍:
The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.