{"title":"[Wnt信号对造血干细胞命运的决定]","authors":"Yoshio Katayama","doi":"10.20837/4201903343","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past 15 years, many studies have revealed that Wnt signaling has a strong impact on hematopoietic stem cell fate. After a controversy over the interpretation of some results, the current understanding is that an appropriate degree of canonical Wnt signaling induces hematopoietic stem cell self-renewal and that noncanonical Wnt signaling keeps the quiescence. It is also likely that the balance between canonical and noncanonical Wnt pathways regulates the stress response and aging of hematopoietic stem cells.</p>","PeriodicalId":10389,"journal":{"name":"Clinical calcium","volume":"29 3","pages":"343-347"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"[Fate decision of hematopoietic stem cells by Wnt signaling.]\",\"authors\":\"Yoshio Katayama\",\"doi\":\"10.20837/4201903343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past 15 years, many studies have revealed that Wnt signaling has a strong impact on hematopoietic stem cell fate. After a controversy over the interpretation of some results, the current understanding is that an appropriate degree of canonical Wnt signaling induces hematopoietic stem cell self-renewal and that noncanonical Wnt signaling keeps the quiescence. It is also likely that the balance between canonical and noncanonical Wnt pathways regulates the stress response and aging of hematopoietic stem cells.</p>\",\"PeriodicalId\":10389,\"journal\":{\"name\":\"Clinical calcium\",\"volume\":\"29 3\",\"pages\":\"343-347\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical calcium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20837/4201903343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical calcium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20837/4201903343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Fate decision of hematopoietic stem cells by Wnt signaling.]
Over the past 15 years, many studies have revealed that Wnt signaling has a strong impact on hematopoietic stem cell fate. After a controversy over the interpretation of some results, the current understanding is that an appropriate degree of canonical Wnt signaling induces hematopoietic stem cell self-renewal and that noncanonical Wnt signaling keeps the quiescence. It is also likely that the balance between canonical and noncanonical Wnt pathways regulates the stress response and aging of hematopoietic stem cells.