猕猴与人类对比敏感度的比较。

IF 1.1 4区 医学 Q4 NEUROSCIENCES Visual Neuroscience Pub Date : 2019-01-01 DOI:10.1017/S0952523819000051
William H Ridder, Kai Ming Zhang, Apoorva Karsolia, Michael Engles, James Burke
{"title":"猕猴与人类对比敏感度的比较。","authors":"William H Ridder,&nbsp;Kai Ming Zhang,&nbsp;Apoorva Karsolia,&nbsp;Michael Engles,&nbsp;James Burke","doi":"10.1017/S0952523819000051","DOIUrl":null,"url":null,"abstract":"<p><p>Contrast sensitivity functions reveal information about a subject's overall visual ability and have been investigated in several species of nonhuman primates (NHPs) with experimentally induced amblyopia and glaucoma. However, there are no published studies comparing contrast sensitivity functions across these species of normal NHPs. The purpose of this investigation was to compare contrast sensitivity across these primates to determine whether they are similar. Ten normal humans and eight normal NHPs (Macaca fascicularis) took part in this project. Previously published data from Macaca mulatta and Macaca nemestrina were also compared. Threshold was operationally defined as two misses in a row for a descending method of limits. A similar paradigm was used for the humans except that the descending method of limits was combined with a spatial, two-alternative forced choice (2-AFC) technique. The contrast sensitivity functions were fit with a double exponential function. The averaged peak contrast sensitivity, peak spatial frequency, acuity, and area under the curve for the humans were 268.9, 3.40 cpd, 27.3 cpd, and 2345.4 and for the Macaca fascicularis were 99.2, 3.93 cpd, 26.1 cpd, and 980.9. A two-sample t-test indicated that the peak contrast sensitivities (P = 0.001) and areas under the curve (P = 0.010) were significantly different. The peak spatial frequencies (P = 0.150) and the extrapolated visual acuities (P = 0.763) were not different. The contrast sensitivities for the Macaca fascicularis, Macaca mulatta, and Macaca nemestrina were qualitatively and quantitatively similar. The contrast sensitivity functions for the NHPs had lower peak contrast sensitivities and areas under the curve than the humans. Even though different methods have been used to measure contrast sensitivity in different species of NHP, the functions are similar. The contrast sensitivity differences and similarities between humans and NHPs need to be considered when using NHPs to study human disease.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0952523819000051","citationCount":"2","resultStr":"{\"title\":\"Comparison of contrast sensitivity in macaque monkeys and humans.\",\"authors\":\"William H Ridder,&nbsp;Kai Ming Zhang,&nbsp;Apoorva Karsolia,&nbsp;Michael Engles,&nbsp;James Burke\",\"doi\":\"10.1017/S0952523819000051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Contrast sensitivity functions reveal information about a subject's overall visual ability and have been investigated in several species of nonhuman primates (NHPs) with experimentally induced amblyopia and glaucoma. However, there are no published studies comparing contrast sensitivity functions across these species of normal NHPs. The purpose of this investigation was to compare contrast sensitivity across these primates to determine whether they are similar. Ten normal humans and eight normal NHPs (Macaca fascicularis) took part in this project. Previously published data from Macaca mulatta and Macaca nemestrina were also compared. Threshold was operationally defined as two misses in a row for a descending method of limits. A similar paradigm was used for the humans except that the descending method of limits was combined with a spatial, two-alternative forced choice (2-AFC) technique. The contrast sensitivity functions were fit with a double exponential function. The averaged peak contrast sensitivity, peak spatial frequency, acuity, and area under the curve for the humans were 268.9, 3.40 cpd, 27.3 cpd, and 2345.4 and for the Macaca fascicularis were 99.2, 3.93 cpd, 26.1 cpd, and 980.9. A two-sample t-test indicated that the peak contrast sensitivities (P = 0.001) and areas under the curve (P = 0.010) were significantly different. The peak spatial frequencies (P = 0.150) and the extrapolated visual acuities (P = 0.763) were not different. The contrast sensitivities for the Macaca fascicularis, Macaca mulatta, and Macaca nemestrina were qualitatively and quantitatively similar. The contrast sensitivity functions for the NHPs had lower peak contrast sensitivities and areas under the curve than the humans. Even though different methods have been used to measure contrast sensitivity in different species of NHP, the functions are similar. The contrast sensitivity differences and similarities between humans and NHPs need to be considered when using NHPs to study human disease.</p>\",\"PeriodicalId\":23556,\"journal\":{\"name\":\"Visual Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0952523819000051\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0952523819000051\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523819000051","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

对比敏感度功能揭示了受试者整体视觉能力的信息,并在几种实验诱导的弱视和青光眼非人灵长类动物(NHPs)中进行了研究。然而,没有发表的研究比较这些正常NHPs物种的对比灵敏度函数。这项研究的目的是比较这些灵长类动物的对比敏感度,以确定它们是否相似。10名正常人和8名正常猕猴(Macaca fascicularis)参加了本项目。之前发表的来自mulatta和nemestrina猕猴的数据也进行了比较。阈值在操作上定义为连续两次未命中限制的下降方法。人类也使用了类似的范例,除了极限下降法与空间双选项强迫选择(2-AFC)技术相结合。对比灵敏度函数用双指数函数拟合。人类的平均峰值对比敏感度、峰值空间频率、锐度和曲线下面积分别为268.9、3.40、27.3和2345.4,而猕猴的平均峰值对比敏感度、空间频率和锐度分别为99.2、3.93、26.1和980.9。双样本t检验显示,峰值对比灵敏度(P = 0.001)和曲线下面积(P = 0.010)差异有统计学意义。峰值空间频率(P = 0.150)和外推视力(P = 0.763)无显著差异。束状猕猴、mulatta猕猴和nemestrina猕猴的对比灵敏度在定性和定量上相似。对比灵敏度函数的峰值对比灵敏度和曲线下面积均低于人类。尽管不同的方法被用来测量不同种类的NHP的对比灵敏度,但功能是相似的。在使用NHPs研究人类疾病时,需要考虑人与NHPs的对比敏感性差异和相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of contrast sensitivity in macaque monkeys and humans.

Contrast sensitivity functions reveal information about a subject's overall visual ability and have been investigated in several species of nonhuman primates (NHPs) with experimentally induced amblyopia and glaucoma. However, there are no published studies comparing contrast sensitivity functions across these species of normal NHPs. The purpose of this investigation was to compare contrast sensitivity across these primates to determine whether they are similar. Ten normal humans and eight normal NHPs (Macaca fascicularis) took part in this project. Previously published data from Macaca mulatta and Macaca nemestrina were also compared. Threshold was operationally defined as two misses in a row for a descending method of limits. A similar paradigm was used for the humans except that the descending method of limits was combined with a spatial, two-alternative forced choice (2-AFC) technique. The contrast sensitivity functions were fit with a double exponential function. The averaged peak contrast sensitivity, peak spatial frequency, acuity, and area under the curve for the humans were 268.9, 3.40 cpd, 27.3 cpd, and 2345.4 and for the Macaca fascicularis were 99.2, 3.93 cpd, 26.1 cpd, and 980.9. A two-sample t-test indicated that the peak contrast sensitivities (P = 0.001) and areas under the curve (P = 0.010) were significantly different. The peak spatial frequencies (P = 0.150) and the extrapolated visual acuities (P = 0.763) were not different. The contrast sensitivities for the Macaca fascicularis, Macaca mulatta, and Macaca nemestrina were qualitatively and quantitatively similar. The contrast sensitivity functions for the NHPs had lower peak contrast sensitivities and areas under the curve than the humans. Even though different methods have been used to measure contrast sensitivity in different species of NHP, the functions are similar. The contrast sensitivity differences and similarities between humans and NHPs need to be considered when using NHPs to study human disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Neuroscience
Visual Neuroscience 医学-神经科学
CiteScore
2.20
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.
期刊最新文献
Chemically induced cone degeneration in the 13-lined ground squirrel. Pre-stimulus bioelectrical activity in lightadapted ERG under blue versus white background - CORRIGENDUM. Evolution of the visual system in ray-finned fishes. Pre-stimulus bioelectrical activity in light-adapted ERG under blue versus white background Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1