Niravkumar A Patel, Jiawen Yan, David Levi, Reza Monfaredi, Kevin Cleary, Iulian Iordachita
{"title":"用于图像引导经皮介入治疗的车载机器人:机械设计和初步准确性评估。","authors":"Niravkumar A Patel, Jiawen Yan, David Levi, Reza Monfaredi, Kevin Cleary, Iulian Iordachita","doi":"10.1109/IROS.2018.8593807","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a body-mounted, four degree-of-freedom (4-DOF) parallel mechanism robot for image-guided percutaneous interventions. The design of the robot is optimized to be light weight and compact such that it could be mounted to the patient body. It has a modular design that can be adopted for assisting various image-guided, needle-based percutaneous interventions such as arthrography, biopsy and brachytherapy seed placement. The robot mechanism and the control system are designed and manufactured with components compatible with imaging modalities including Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). The current version of the robot presented in this paper is optimized for shoulder arthrography under MRI guidance; a Z-shaped fiducial frame is attached to the robot, providing accurate and repeatable robot registration with the MR scanner coordinate system. Here we present the mechanical design of the manipulator, robot kinematics, robot calibration procedure, and preliminary bench-top accuracy assessment. The bench-top accuracy evaluation of the robotic manipulator shows average translational error of 1.01 mm and 0.96 mm in X and Z axes, respectively, and average rotational error of 3.06 degrees and 2.07 degrees about the X and Z axes, respectively.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2018 ","pages":"1443-1448"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2018.8593807","citationCount":"10","resultStr":"{\"title\":\"Body-Mounted Robot for Image-Guided Percutaneous Interventions: Mechanical Design and Preliminary Accuracy Evaluation.\",\"authors\":\"Niravkumar A Patel, Jiawen Yan, David Levi, Reza Monfaredi, Kevin Cleary, Iulian Iordachita\",\"doi\":\"10.1109/IROS.2018.8593807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a body-mounted, four degree-of-freedom (4-DOF) parallel mechanism robot for image-guided percutaneous interventions. The design of the robot is optimized to be light weight and compact such that it could be mounted to the patient body. It has a modular design that can be adopted for assisting various image-guided, needle-based percutaneous interventions such as arthrography, biopsy and brachytherapy seed placement. The robot mechanism and the control system are designed and manufactured with components compatible with imaging modalities including Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). The current version of the robot presented in this paper is optimized for shoulder arthrography under MRI guidance; a Z-shaped fiducial frame is attached to the robot, providing accurate and repeatable robot registration with the MR scanner coordinate system. Here we present the mechanical design of the manipulator, robot kinematics, robot calibration procedure, and preliminary bench-top accuracy assessment. The bench-top accuracy evaluation of the robotic manipulator shows average translational error of 1.01 mm and 0.96 mm in X and Z axes, respectively, and average rotational error of 3.06 degrees and 2.07 degrees about the X and Z axes, respectively.</p>\",\"PeriodicalId\":74523,\"journal\":{\"name\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"2018 \",\"pages\":\"1443-1448\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/IROS.2018.8593807\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2018.8593807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Body-Mounted Robot for Image-Guided Percutaneous Interventions: Mechanical Design and Preliminary Accuracy Evaluation.
This paper presents a body-mounted, four degree-of-freedom (4-DOF) parallel mechanism robot for image-guided percutaneous interventions. The design of the robot is optimized to be light weight and compact such that it could be mounted to the patient body. It has a modular design that can be adopted for assisting various image-guided, needle-based percutaneous interventions such as arthrography, biopsy and brachytherapy seed placement. The robot mechanism and the control system are designed and manufactured with components compatible with imaging modalities including Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). The current version of the robot presented in this paper is optimized for shoulder arthrography under MRI guidance; a Z-shaped fiducial frame is attached to the robot, providing accurate and repeatable robot registration with the MR scanner coordinate system. Here we present the mechanical design of the manipulator, robot kinematics, robot calibration procedure, and preliminary bench-top accuracy assessment. The bench-top accuracy evaluation of the robotic manipulator shows average translational error of 1.01 mm and 0.96 mm in X and Z axes, respectively, and average rotational error of 3.06 degrees and 2.07 degrees about the X and Z axes, respectively.