Haneesh Saini, Parashuram Kallem, Eva Otyepková, Florian Geyer, Andreas Schneemann, Vaclav Ranc, Fawzi Banat, Radek Zbořil, Michal Otyepka, Roland A. Fischer and Kolleboyina Jayaramulu
{"title":"基于mof的二维液体弹珠:表面能计算和使用ZIF-9-III@PVDF膜†的高效油水分离","authors":"Haneesh Saini, Parashuram Kallem, Eva Otyepková, Florian Geyer, Andreas Schneemann, Vaclav Ranc, Fawzi Banat, Radek Zbořil, Michal Otyepka, Roland A. Fischer and Kolleboyina Jayaramulu","doi":"10.1039/D1TA05835E","DOIUrl":null,"url":null,"abstract":"<p >Superhydrophobic MOF-nanosheets assembled on the outside of an aqueous droplet form ‘liquid marbles’. A facile mechanochemical-based synthesis followed by ultrasonication was used to prepare two-dimensional superhydrophobic–oleophilic MOF nanosheets of a Co<small><sup>2+</sup></small>-based zeolitic imidazolate framework, namely ZIF-9-III ([Co<small><sub>4</sub></small>(bIm)<small><sub>16</sub></small>] with bIm<small><sup>?</sup></small> = benzimidazolate). The resulting ZIF-9-III showed excellent hydrophobicity (advancing water contact angle of 144°) and oleophilicity (oil contact angle of ≈0°). The superhydrophobic behavior originated from its predominant outer (002) surface, which featured nanoscale corrugation caused by the exposed benzimidazole groups. This behavior was corroborated by inverse gas chromatography measurements to determine the surface energies of bulk exfoliated 2D ZIF-9-III nanosheets and 3D ZIF-9-I. Taking advantage of the unique surface properties, including low surface energy and good moisture stability, we prepared ZIF-9-III@PVDF (PVDF = polyvinylidene fluoride) membranes following the non-solvent induced phase inversion (NIPS) process. The resulting membranes were exploited in real-time oil/water separation and featured remarkably high adsorption capacity and anti-staining properties. Therefore, this work opens the door to developing new superhydrophobic MOF-based composite materials with permeant porosity, which may enable applications in self-cleaning membranes for oil–water separation.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Two-dimensional MOF-based liquid marbles: surface energy calculations and efficient oil–water separation using a ZIF-9-III@PVDF membrane†\",\"authors\":\"Haneesh Saini, Parashuram Kallem, Eva Otyepková, Florian Geyer, Andreas Schneemann, Vaclav Ranc, Fawzi Banat, Radek Zbořil, Michal Otyepka, Roland A. Fischer and Kolleboyina Jayaramulu\",\"doi\":\"10.1039/D1TA05835E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Superhydrophobic MOF-nanosheets assembled on the outside of an aqueous droplet form ‘liquid marbles’. A facile mechanochemical-based synthesis followed by ultrasonication was used to prepare two-dimensional superhydrophobic–oleophilic MOF nanosheets of a Co<small><sup>2+</sup></small>-based zeolitic imidazolate framework, namely ZIF-9-III ([Co<small><sub>4</sub></small>(bIm)<small><sub>16</sub></small>] with bIm<small><sup>?</sup></small> = benzimidazolate). The resulting ZIF-9-III showed excellent hydrophobicity (advancing water contact angle of 144°) and oleophilicity (oil contact angle of ≈0°). The superhydrophobic behavior originated from its predominant outer (002) surface, which featured nanoscale corrugation caused by the exposed benzimidazole groups. This behavior was corroborated by inverse gas chromatography measurements to determine the surface energies of bulk exfoliated 2D ZIF-9-III nanosheets and 3D ZIF-9-I. Taking advantage of the unique surface properties, including low surface energy and good moisture stability, we prepared ZIF-9-III@PVDF (PVDF = polyvinylidene fluoride) membranes following the non-solvent induced phase inversion (NIPS) process. The resulting membranes were exploited in real-time oil/water separation and featured remarkably high adsorption capacity and anti-staining properties. Therefore, this work opens the door to developing new superhydrophobic MOF-based composite materials with permeant porosity, which may enable applications in self-cleaning membranes for oil–water separation.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2021/ta/d1ta05835e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2021/ta/d1ta05835e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Two-dimensional MOF-based liquid marbles: surface energy calculations and efficient oil–water separation using a ZIF-9-III@PVDF membrane†
Superhydrophobic MOF-nanosheets assembled on the outside of an aqueous droplet form ‘liquid marbles’. A facile mechanochemical-based synthesis followed by ultrasonication was used to prepare two-dimensional superhydrophobic–oleophilic MOF nanosheets of a Co2+-based zeolitic imidazolate framework, namely ZIF-9-III ([Co4(bIm)16] with bIm? = benzimidazolate). The resulting ZIF-9-III showed excellent hydrophobicity (advancing water contact angle of 144°) and oleophilicity (oil contact angle of ≈0°). The superhydrophobic behavior originated from its predominant outer (002) surface, which featured nanoscale corrugation caused by the exposed benzimidazole groups. This behavior was corroborated by inverse gas chromatography measurements to determine the surface energies of bulk exfoliated 2D ZIF-9-III nanosheets and 3D ZIF-9-I. Taking advantage of the unique surface properties, including low surface energy and good moisture stability, we prepared ZIF-9-III@PVDF (PVDF = polyvinylidene fluoride) membranes following the non-solvent induced phase inversion (NIPS) process. The resulting membranes were exploited in real-time oil/water separation and featured remarkably high adsorption capacity and anti-staining properties. Therefore, this work opens the door to developing new superhydrophobic MOF-based composite materials with permeant porosity, which may enable applications in self-cleaning membranes for oil–water separation.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.