{"title":"热光度立体的时间分辨远红外光输运分解。","authors":"Kenichiro Tanaka, Nobuhiro Ikeya, Tsuyoshi Takatani, Hiroyuki Kubo, Takuya Funatomi, Vijay Ravi, Achuta Kadambi, Yasuhiro Mukaigawa","doi":"10.1109/TPAMI.2019.2959304","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel time-resolved light transport decomposition method using thermal imaging. Because the speed of heat propagation is much slower than the speed of light propagation, the transient transport of far infrared light can be observed at a video frame rate. A key observation is that the thermal image looks similar to the visible light image in an appropriately controlled environment. This implies that conventional computer vision techniques can be straightforwardly applied to the thermal image. We show that the diffuse component in the thermal image can be separated, and therefore, the surface normals of objects can be estimated by the Lambertian photometric stereo. The effectiveness of our method is evaluated by conducting real-world experiments, and its applicability to black body, transparent, and translucent objects is shown.</p>","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"43 6","pages":"2075-2085"},"PeriodicalIF":20.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TPAMI.2019.2959304","citationCount":"5","resultStr":"{\"title\":\"Time-Resolved Far Infrared Light Transport Decomposition for Thermal Photometric Stereo.\",\"authors\":\"Kenichiro Tanaka, Nobuhiro Ikeya, Tsuyoshi Takatani, Hiroyuki Kubo, Takuya Funatomi, Vijay Ravi, Achuta Kadambi, Yasuhiro Mukaigawa\",\"doi\":\"10.1109/TPAMI.2019.2959304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a novel time-resolved light transport decomposition method using thermal imaging. Because the speed of heat propagation is much slower than the speed of light propagation, the transient transport of far infrared light can be observed at a video frame rate. A key observation is that the thermal image looks similar to the visible light image in an appropriately controlled environment. This implies that conventional computer vision techniques can be straightforwardly applied to the thermal image. We show that the diffuse component in the thermal image can be separated, and therefore, the surface normals of objects can be estimated by the Lambertian photometric stereo. The effectiveness of our method is evaluated by conducting real-world experiments, and its applicability to black body, transparent, and translucent objects is shown.</p>\",\"PeriodicalId\":13426,\"journal\":{\"name\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"volume\":\"43 6\",\"pages\":\"2075-2085\"},\"PeriodicalIF\":20.8000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TPAMI.2019.2959304\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2019.2959304\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TPAMI.2019.2959304","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Time-Resolved Far Infrared Light Transport Decomposition for Thermal Photometric Stereo.
We present a novel time-resolved light transport decomposition method using thermal imaging. Because the speed of heat propagation is much slower than the speed of light propagation, the transient transport of far infrared light can be observed at a video frame rate. A key observation is that the thermal image looks similar to the visible light image in an appropriately controlled environment. This implies that conventional computer vision techniques can be straightforwardly applied to the thermal image. We show that the diffuse component in the thermal image can be separated, and therefore, the surface normals of objects can be estimated by the Lambertian photometric stereo. The effectiveness of our method is evaluated by conducting real-world experiments, and its applicability to black body, transparent, and translucent objects is shown.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.