打基因组牌。

IF 1.8 4区 医学 Q3 GENETICS & HEREDITY Journal of neurogenetics Pub Date : 2020-03-01 Epub Date: 2019-12-24 DOI:10.1080/01677063.2019.1706093
Ari Berkowitz
{"title":"打基因组牌。","authors":"Ari Berkowitz","doi":"10.1080/01677063.2019.1706093","DOIUrl":null,"url":null,"abstract":"<p><p>In the 1990s, prominent biologists and journalists predicted that by 2020 each of us would carry a genome card, which would allow physicians to access our entire genome sequence and routinely use this information to diagnose and treat common and debilitating conditions. This is not yet the case. Why not? Common and debilitating diseases are rarely caused by single-gene mutations, and this was recognized before these genome card predictions had been made. Debilitating conditions, including common psychiatric disorders, are typically caused either by rare mutations or by complex interactions of many genes, each having a small effect, and epigenetic, environmental, and microbial factors. In such cases, having a complete genome sequence may have limited utility in diagnosis and treatment. Genome sequencing technologies have transformed biological research in many ways, but had a much smaller effect than expected on treatments of common diseases. Thus, early proponents of genome sequencing effectively \"mis-promised\" its benefits. One reason may be that there are incentives for both biologists and journalists to tell simple stories, including the idea of relatively simple genetic causation of common, debilitating diseases. These incentives may have led to misleading predictions, which to some extent continue today. Although the Human Genome Project has facilitated biological research generally, the mis-promising of medical benefits, at least for treating common and debilitating disorders, could undermine support for scientific research over the long term.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"34 1","pages":"189-197"},"PeriodicalIF":1.8000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2019.1706093","citationCount":"0","resultStr":"{\"title\":\"Playing the genome card.\",\"authors\":\"Ari Berkowitz\",\"doi\":\"10.1080/01677063.2019.1706093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the 1990s, prominent biologists and journalists predicted that by 2020 each of us would carry a genome card, which would allow physicians to access our entire genome sequence and routinely use this information to diagnose and treat common and debilitating conditions. This is not yet the case. Why not? Common and debilitating diseases are rarely caused by single-gene mutations, and this was recognized before these genome card predictions had been made. Debilitating conditions, including common psychiatric disorders, are typically caused either by rare mutations or by complex interactions of many genes, each having a small effect, and epigenetic, environmental, and microbial factors. In such cases, having a complete genome sequence may have limited utility in diagnosis and treatment. Genome sequencing technologies have transformed biological research in many ways, but had a much smaller effect than expected on treatments of common diseases. Thus, early proponents of genome sequencing effectively \\\"mis-promised\\\" its benefits. One reason may be that there are incentives for both biologists and journalists to tell simple stories, including the idea of relatively simple genetic causation of common, debilitating diseases. These incentives may have led to misleading predictions, which to some extent continue today. Although the Human Genome Project has facilitated biological research generally, the mis-promising of medical benefits, at least for treating common and debilitating disorders, could undermine support for scientific research over the long term.</p>\",\"PeriodicalId\":16491,\"journal\":{\"name\":\"Journal of neurogenetics\",\"volume\":\"34 1\",\"pages\":\"189-197\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01677063.2019.1706093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01677063.2019.1706093\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2019.1706093","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

在20世纪90年代,著名的生物学家和记者预测,到2020年,我们每个人都将携带一张基因组卡,这将使医生能够访问我们的整个基因组序列,并常规地使用这些信息来诊断和治疗常见的和使人衰弱的疾病。但事实并非如此。为什么不呢?常见的和使人衰弱的疾病很少是由单基因突变引起的,这在这些基因组卡预测做出之前就已经认识到。使人衰弱的疾病,包括常见的精神疾病,通常是由罕见的突变或许多基因的复杂相互作用引起的,每个基因都有很小的影响,以及表观遗传、环境和微生物因素。在这种情况下,拥有完整的基因组序列在诊断和治疗方面的作用可能有限。基因组测序技术在许多方面改变了生物学研究,但对普通疾病治疗的影响远小于预期。因此,基因组测序的早期支持者实际上“错误地承诺”了它的好处。一个原因可能是生物学家和记者都有动机讲述简单的故事,包括常见的、使人衰弱的疾病的相对简单的遗传原因的想法。这些激励措施可能导致了误导性的预测,这种预测在某种程度上延续至今。尽管人类基因组计划总体上促进了生物研究,但对医疗效益的错误承诺,至少在治疗常见和使人衰弱的疾病方面,可能会从长远来看削弱对科学研究的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Playing the genome card.

In the 1990s, prominent biologists and journalists predicted that by 2020 each of us would carry a genome card, which would allow physicians to access our entire genome sequence and routinely use this information to diagnose and treat common and debilitating conditions. This is not yet the case. Why not? Common and debilitating diseases are rarely caused by single-gene mutations, and this was recognized before these genome card predictions had been made. Debilitating conditions, including common psychiatric disorders, are typically caused either by rare mutations or by complex interactions of many genes, each having a small effect, and epigenetic, environmental, and microbial factors. In such cases, having a complete genome sequence may have limited utility in diagnosis and treatment. Genome sequencing technologies have transformed biological research in many ways, but had a much smaller effect than expected on treatments of common diseases. Thus, early proponents of genome sequencing effectively "mis-promised" its benefits. One reason may be that there are incentives for both biologists and journalists to tell simple stories, including the idea of relatively simple genetic causation of common, debilitating diseases. These incentives may have led to misleading predictions, which to some extent continue today. Although the Human Genome Project has facilitated biological research generally, the mis-promising of medical benefits, at least for treating common and debilitating disorders, could undermine support for scientific research over the long term.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurogenetics
Journal of neurogenetics 医学-神经科学
CiteScore
4.40
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms
期刊最新文献
Epilepsy genetics in the paediatric population of the Eastern Anatolia region of Turkey. Targeted deletion of olfactory receptors in D. melanogaster via CRISPR/Cas9-mediated LexA knock-in. The initial years of the Cold Spring Harbor Laboratory summer course on the neurobiology of Drosophila. Clinical potential of epigenetic and microRNA biomarkers in PTSD. Molecular analysis of SMN2, NAIP, and GTF2H2 gene deletions and relationships with clinical subtypes of spinal muscular atrophy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1