利用特定受试者卷积神经网络加速同步多切片磁共振成像。

Chi Zhang, Steen Moeller, Sebastian Weingärtner, Kâmil Uğurbil, Mehmet Akçakaya
{"title":"利用特定受试者卷积神经网络加速同步多切片磁共振成像。","authors":"Chi Zhang, Steen Moeller, Sebastian Weingärtner, Kâmil Uğurbil, Mehmet Akçakaya","doi":"10.1109/ACSSC.2018.8645313","DOIUrl":null,"url":null,"abstract":"<p><p>Simultaneous multi-slice or multi-band (SMS/MB) imaging allows accelerated coverage in magnetic resonance imaging (MRI). Multiple slices are excited and acquired at the same time, and reconstructed using the redundancies in receiver coil arrays, similar to parallel imaging. SMS/MB reconstruction is currently performed with linear reconstruction techniques. Recently, a nonlinear reconstruction method for parallel imaging, Robust Artificial-neural-networks for k-space Interpolation (RAKI) was proposed and shown to improve upon linear methods. This method uses convolutional neural networks (CNN) trained solely on subject-specific calibration data. In this study, we sought to extend RAKI to SMS/MB imaging reconstruction. CNN training was performed on calibration data acquired prior to SMS/MB imaging, in a manner consistent with the existing linear methods. These CNNs were used to reconstruct a time series of functional MRI (fMRI) data. CNN network parameters were optimized using an extensive search of the parameter space. With these optimal parameters, RAKI substantially improves image quality compared to a commonly used linear reconstruction algorithm, especially for high acceleration rates.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2018 ","pages":"1636-1640"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938220/pdf/nihms-1064538.pdf","citationCount":"0","resultStr":"{\"title\":\"Accelerated Simultaneous Multi-Slice MRI using Subject-Specific Convolutional Neural Networks.\",\"authors\":\"Chi Zhang, Steen Moeller, Sebastian Weingärtner, Kâmil Uğurbil, Mehmet Akçakaya\",\"doi\":\"10.1109/ACSSC.2018.8645313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simultaneous multi-slice or multi-band (SMS/MB) imaging allows accelerated coverage in magnetic resonance imaging (MRI). Multiple slices are excited and acquired at the same time, and reconstructed using the redundancies in receiver coil arrays, similar to parallel imaging. SMS/MB reconstruction is currently performed with linear reconstruction techniques. Recently, a nonlinear reconstruction method for parallel imaging, Robust Artificial-neural-networks for k-space Interpolation (RAKI) was proposed and shown to improve upon linear methods. This method uses convolutional neural networks (CNN) trained solely on subject-specific calibration data. In this study, we sought to extend RAKI to SMS/MB imaging reconstruction. CNN training was performed on calibration data acquired prior to SMS/MB imaging, in a manner consistent with the existing linear methods. These CNNs were used to reconstruct a time series of functional MRI (fMRI) data. CNN network parameters were optimized using an extensive search of the parameter space. With these optimal parameters, RAKI substantially improves image quality compared to a commonly used linear reconstruction algorithm, especially for high acceleration rates.</p>\",\"PeriodicalId\":72692,\"journal\":{\"name\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"volume\":\"2018 \",\"pages\":\"1636-1640\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938220/pdf/nihms-1064538.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2018.8645313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference record. Asilomar Conference on Signals, Systems & Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2018.8645313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

同步多切片或多波段(SMS/MB)成像可加速磁共振成像(MRI)的覆盖范围。多个切片同时被激发和采集,并利用接收线圈阵列中的冗余进行重建,类似于平行成像。SMS/MB 重建目前采用线性重建技术。最近,一种用于平行成像的非线性重建方法--用于 k 空间插值的鲁棒人工神经网络(RAKI)被提出,并被证明能改进线性方法。该方法使用卷积神经网络(CNN),仅根据特定对象的校准数据进行训练。在这项研究中,我们试图将 RAKI 扩展到 SMS/MB 成像重建。我们采用与现有线性方法一致的方式,对 SMS/MB 成像前获取的校准数据进行 CNN 训练。这些 CNN 被用于重建功能性 MRI(fMRI)数据的时间序列。通过对参数空间的广泛搜索,对 CNN 网络参数进行了优化。与常用的线性重建算法相比,RAKI 利用这些最佳参数大大提高了图像质量,尤其是在高加速率的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerated Simultaneous Multi-Slice MRI using Subject-Specific Convolutional Neural Networks.

Simultaneous multi-slice or multi-band (SMS/MB) imaging allows accelerated coverage in magnetic resonance imaging (MRI). Multiple slices are excited and acquired at the same time, and reconstructed using the redundancies in receiver coil arrays, similar to parallel imaging. SMS/MB reconstruction is currently performed with linear reconstruction techniques. Recently, a nonlinear reconstruction method for parallel imaging, Robust Artificial-neural-networks for k-space Interpolation (RAKI) was proposed and shown to improve upon linear methods. This method uses convolutional neural networks (CNN) trained solely on subject-specific calibration data. In this study, we sought to extend RAKI to SMS/MB imaging reconstruction. CNN training was performed on calibration data acquired prior to SMS/MB imaging, in a manner consistent with the existing linear methods. These CNNs were used to reconstruct a time series of functional MRI (fMRI) data. CNN network parameters were optimized using an extensive search of the parameter space. With these optimal parameters, RAKI substantially improves image quality compared to a commonly used linear reconstruction algorithm, especially for high acceleration rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
A novel method for 12-lead ECG reconstruction. Multilevel State-Space Models Enable High Precision Event Related Potential Analysis. Topological Knowledge Distillation for Wearable Sensor Data. A Hybrid Scattering Transform for Signals with Isolated Singularities. A mechanistically interpretable model of the retinal neural code for natural scenes with multiscale adaptive dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1