{"title":"实现用于成像流式细胞术的机器学习方法","authors":"Sadao Ota;Issei Sato;Ryoichi Horisaki","doi":"10.1093/jmicro/dfaa005","DOIUrl":null,"url":null,"abstract":"In this review, we focus on the applications of machine learning methods for analyzing image data acquired in imaging flow cytometry technologies. We propose that the analysis approaches can be categorized into two groups based on the type of data, raw imaging signals or features explicitly extracted from images, being analyzed by a trained model. We hope that this categorization is helpful for understanding uniqueness, differences and opportunities when the machine learning-based analysis is implemented in recently developed ‘imaging’ cell sorters.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfaa005","citationCount":"11","resultStr":"{\"title\":\"Implementing machine learning methods for imaging flow cytometry\",\"authors\":\"Sadao Ota;Issei Sato;Ryoichi Horisaki\",\"doi\":\"10.1093/jmicro/dfaa005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this review, we focus on the applications of machine learning methods for analyzing image data acquired in imaging flow cytometry technologies. We propose that the analysis approaches can be categorized into two groups based on the type of data, raw imaging signals or features explicitly extracted from images, being analyzed by a trained model. We hope that this categorization is helpful for understanding uniqueness, differences and opportunities when the machine learning-based analysis is implemented in recently developed ‘imaging’ cell sorters.\",\"PeriodicalId\":18515,\"journal\":{\"name\":\"Microscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/jmicro/dfaa005\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9108472/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9108472/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementing machine learning methods for imaging flow cytometry
In this review, we focus on the applications of machine learning methods for analyzing image data acquired in imaging flow cytometry technologies. We propose that the analysis approaches can be categorized into two groups based on the type of data, raw imaging signals or features explicitly extracted from images, being analyzed by a trained model. We hope that this categorization is helpful for understanding uniqueness, differences and opportunities when the machine learning-based analysis is implemented in recently developed ‘imaging’ cell sorters.
期刊介绍:
Microscopy, previously Journal of Electron Microscopy, promotes research combined with any type of microscopy techniques, applied in life and material sciences. Microscopy is the official journal of the Japanese Society of Microscopy.