Natalia L Komarova, C Richard Boland, Ajay Goel, Dominik Wodarz
{"title":"阿司匹林与癌症的化学预防:数学和进化动力学视角。","authors":"Natalia L Komarova, C Richard Boland, Ajay Goel, Dominik Wodarz","doi":"10.1002/wsbm.1487","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemiological data indicate that long-term low dose aspirin administration has a protective effect against the occurrence of colorectal cancer, both in sporadic and in hereditary forms of the disease. The mechanisms underlying this protective effect, however, are incompletely understood. The molecular events that lead to protection have been partly defined, but remain to be fully characterized. So far, however, approaches based on evolutionary dynamics have not been discussed much, but can potentially offer important insights. The aim of this review is to highlight this line of investigation and the results that have been obtained. A core observation in this respect is that aspirin has a direct negative impact on the growth dynamics of the cells, by influencing the kinetics of tumor cell division and death. We discuss the application of mathematical models to experimental data to quantify these parameter changes. We then describe further mathematical models that have been used to explore how these aspirin-mediated changes in kinetic parameters influence the probability of successful colony growth versus extinction, and how they affect the evolution of the tumor during aspirin administration. Finally, we discuss mathematical models that have been used to investigate the selective forces that can lead to the rise of mismatch-repair deficient cells in an inflammatory environment, and how this selection can be potentially altered through aspirin-mediated interventions. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Analytical Methods Analytical and Computational Methods > Computational Methods.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486281/pdf/nihms-1574234.pdf","citationCount":"0","resultStr":"{\"title\":\"Aspirin and the chemoprevention of cancers: A mathematical and evolutionary dynamics perspective.\",\"authors\":\"Natalia L Komarova, C Richard Boland, Ajay Goel, Dominik Wodarz\",\"doi\":\"10.1002/wsbm.1487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epidemiological data indicate that long-term low dose aspirin administration has a protective effect against the occurrence of colorectal cancer, both in sporadic and in hereditary forms of the disease. The mechanisms underlying this protective effect, however, are incompletely understood. The molecular events that lead to protection have been partly defined, but remain to be fully characterized. So far, however, approaches based on evolutionary dynamics have not been discussed much, but can potentially offer important insights. The aim of this review is to highlight this line of investigation and the results that have been obtained. A core observation in this respect is that aspirin has a direct negative impact on the growth dynamics of the cells, by influencing the kinetics of tumor cell division and death. We discuss the application of mathematical models to experimental data to quantify these parameter changes. We then describe further mathematical models that have been used to explore how these aspirin-mediated changes in kinetic parameters influence the probability of successful colony growth versus extinction, and how they affect the evolution of the tumor during aspirin administration. Finally, we discuss mathematical models that have been used to investigate the selective forces that can lead to the rise of mismatch-repair deficient cells in an inflammatory environment, and how this selection can be potentially altered through aspirin-mediated interventions. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Analytical Methods Analytical and Computational Methods > Computational Methods.</p>\",\"PeriodicalId\":49254,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486281/pdf/nihms-1574234.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Aspirin and the chemoprevention of cancers: A mathematical and evolutionary dynamics perspective.
Epidemiological data indicate that long-term low dose aspirin administration has a protective effect against the occurrence of colorectal cancer, both in sporadic and in hereditary forms of the disease. The mechanisms underlying this protective effect, however, are incompletely understood. The molecular events that lead to protection have been partly defined, but remain to be fully characterized. So far, however, approaches based on evolutionary dynamics have not been discussed much, but can potentially offer important insights. The aim of this review is to highlight this line of investigation and the results that have been obtained. A core observation in this respect is that aspirin has a direct negative impact on the growth dynamics of the cells, by influencing the kinetics of tumor cell division and death. We discuss the application of mathematical models to experimental data to quantify these parameter changes. We then describe further mathematical models that have been used to explore how these aspirin-mediated changes in kinetic parameters influence the probability of successful colony growth versus extinction, and how they affect the evolution of the tumor during aspirin administration. Finally, we discuss mathematical models that have been used to investigate the selective forces that can lead to the rise of mismatch-repair deficient cells in an inflammatory environment, and how this selection can be potentially altered through aspirin-mediated interventions. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Analytical Methods Analytical and Computational Methods > Computational Methods.
期刊介绍:
Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine
Focus:
Strong interdisciplinary focus
Serves as an encyclopedic reference for systems biology research
Conceptual Framework:
Systems biology asserts the study of organisms as hierarchical systems or networks
Individual biological components interact in complex ways within these systems
Article Coverage:
Discusses biology, methods, and models
Spans systems from a few molecules to whole species
Topical Coverage:
Developmental Biology
Physiology
Biological Mechanisms
Models of Systems, Properties, and Processes
Laboratory Methods and Technologies
Translational, Genomic, and Systems Medicine