Wengeng Zhang, Pragnya Das, Sarah Kelangi, Marianna Bei
{"title":"钾通道作为肢体创伤修复和再生的潜在药物靶点。","authors":"Wengeng Zhang, Pragnya Das, Sarah Kelangi, Marianna Bei","doi":"10.1093/pcmedi/pbz029","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ion channels are a large family of transmembrane proteins, accessible by soluble membrane-impermeable molecules, and thus are targets for development of therapeutic drugs. Ion channels are the second most common target for existing drugs, after G protein-coupled receptors, and are expected to make a big impact on precision medicine in many different diseases including wound repair and regeneration. Research has shown that endogenous bioelectric signaling mediated by ion channels is critical in non-mammalian limb regeneration. However, the role of ion channels in regeneration of limbs in mammalian systems is not yet defined.</p><p><strong>Methods: </strong>To explore the role of potassium channels in limb wound repair and regeneration, the hindlimbs of mouse embryos were amputated at E12.5 when the wound is expected to regenerate and E15.5 when the wound is not expected to regenerate, and gene expression of potassium channels was studied.</p><p><strong>Results: </strong>Most of the potassium channels were downregulated, except for the potassium channel <i>kcnj8</i> (Kir6.1) which was upregulated in E12.5 embryos after amputation.</p><p><strong>Conclusion: </strong>This study provides a new mouse limb regeneration model and demonstrates that potassium channels are potential drug targets for limb wound healing and regeneration.</p>","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":"3 1","pages":"22-33"},"PeriodicalIF":5.1000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/pcmedi/pbz029","citationCount":"6","resultStr":"{\"title\":\"Potassium channels as potential drug targets for limb wound repair and regeneration.\",\"authors\":\"Wengeng Zhang, Pragnya Das, Sarah Kelangi, Marianna Bei\",\"doi\":\"10.1093/pcmedi/pbz029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ion channels are a large family of transmembrane proteins, accessible by soluble membrane-impermeable molecules, and thus are targets for development of therapeutic drugs. Ion channels are the second most common target for existing drugs, after G protein-coupled receptors, and are expected to make a big impact on precision medicine in many different diseases including wound repair and regeneration. Research has shown that endogenous bioelectric signaling mediated by ion channels is critical in non-mammalian limb regeneration. However, the role of ion channels in regeneration of limbs in mammalian systems is not yet defined.</p><p><strong>Methods: </strong>To explore the role of potassium channels in limb wound repair and regeneration, the hindlimbs of mouse embryos were amputated at E12.5 when the wound is expected to regenerate and E15.5 when the wound is not expected to regenerate, and gene expression of potassium channels was studied.</p><p><strong>Results: </strong>Most of the potassium channels were downregulated, except for the potassium channel <i>kcnj8</i> (Kir6.1) which was upregulated in E12.5 embryos after amputation.</p><p><strong>Conclusion: </strong>This study provides a new mouse limb regeneration model and demonstrates that potassium channels are potential drug targets for limb wound healing and regeneration.</p>\",\"PeriodicalId\":33608,\"journal\":{\"name\":\"Precision Clinical Medicine\",\"volume\":\"3 1\",\"pages\":\"22-33\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/pcmedi/pbz029\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Clinical Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/pcmedi/pbz029\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbz029","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Potassium channels as potential drug targets for limb wound repair and regeneration.
Background: Ion channels are a large family of transmembrane proteins, accessible by soluble membrane-impermeable molecules, and thus are targets for development of therapeutic drugs. Ion channels are the second most common target for existing drugs, after G protein-coupled receptors, and are expected to make a big impact on precision medicine in many different diseases including wound repair and regeneration. Research has shown that endogenous bioelectric signaling mediated by ion channels is critical in non-mammalian limb regeneration. However, the role of ion channels in regeneration of limbs in mammalian systems is not yet defined.
Methods: To explore the role of potassium channels in limb wound repair and regeneration, the hindlimbs of mouse embryos were amputated at E12.5 when the wound is expected to regenerate and E15.5 when the wound is not expected to regenerate, and gene expression of potassium channels was studied.
Results: Most of the potassium channels were downregulated, except for the potassium channel kcnj8 (Kir6.1) which was upregulated in E12.5 embryos after amputation.
Conclusion: This study provides a new mouse limb regeneration model and demonstrates that potassium channels are potential drug targets for limb wound healing and regeneration.
期刊介绍:
Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.