Brian M D'Onofrio, Arvid Sjölander, Benjamin B Lahey, Paul Lichtenstein, A Sara Öberg
{"title":"观察性研究中混淆的解释。","authors":"Brian M D'Onofrio, Arvid Sjölander, Benjamin B Lahey, Paul Lichtenstein, A Sara Öberg","doi":"10.1146/annurev-clinpsy-032816-045030","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of this review is to enable clinical psychology researchers to more rigorously test competing hypotheses when studying risk factors in observational studies. We argue that there is a critical need for researchers to leverage recent advances in epidemiology/biostatistics related to causal inference and to use innovative approaches to address a key limitation of observational research: the need to account for confounding. We first review theoretical issues related to the study of causation, how causal diagrams can facilitate the identification and testing of competing hypotheses, and the current limitations of observational research in the field. We then describe two broad approaches that help account for confounding: analytic approaches that account for measured traits and designs that account for unmeasured factors. We provide descriptions of several such approaches and highlight their strengths and limitations, particularly as they relate to the etiology and treatment of behavioral health problems.</p>","PeriodicalId":50755,"journal":{"name":"Annual Review of Clinical Psychology","volume":null,"pages":null},"PeriodicalIF":17.8000,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-clinpsy-032816-045030","citationCount":"29","resultStr":"{\"title\":\"Accounting for Confounding in Observational Studies.\",\"authors\":\"Brian M D'Onofrio, Arvid Sjölander, Benjamin B Lahey, Paul Lichtenstein, A Sara Öberg\",\"doi\":\"10.1146/annurev-clinpsy-032816-045030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The goal of this review is to enable clinical psychology researchers to more rigorously test competing hypotheses when studying risk factors in observational studies. We argue that there is a critical need for researchers to leverage recent advances in epidemiology/biostatistics related to causal inference and to use innovative approaches to address a key limitation of observational research: the need to account for confounding. We first review theoretical issues related to the study of causation, how causal diagrams can facilitate the identification and testing of competing hypotheses, and the current limitations of observational research in the field. We then describe two broad approaches that help account for confounding: analytic approaches that account for measured traits and designs that account for unmeasured factors. We provide descriptions of several such approaches and highlight their strengths and limitations, particularly as they relate to the etiology and treatment of behavioral health problems.</p>\",\"PeriodicalId\":50755,\"journal\":{\"name\":\"Annual Review of Clinical Psychology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.8000,\"publicationDate\":\"2020-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-clinpsy-032816-045030\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Clinical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-clinpsy-032816-045030\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Clinical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1146/annurev-clinpsy-032816-045030","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
Accounting for Confounding in Observational Studies.
The goal of this review is to enable clinical psychology researchers to more rigorously test competing hypotheses when studying risk factors in observational studies. We argue that there is a critical need for researchers to leverage recent advances in epidemiology/biostatistics related to causal inference and to use innovative approaches to address a key limitation of observational research: the need to account for confounding. We first review theoretical issues related to the study of causation, how causal diagrams can facilitate the identification and testing of competing hypotheses, and the current limitations of observational research in the field. We then describe two broad approaches that help account for confounding: analytic approaches that account for measured traits and designs that account for unmeasured factors. We provide descriptions of several such approaches and highlight their strengths and limitations, particularly as they relate to the etiology and treatment of behavioral health problems.
期刊介绍:
The Annual Review of Clinical Psychology is a publication that has been available since 2005. It offers comprehensive reviews on significant developments in the field of clinical psychology and psychiatry. The journal covers various aspects including research, theory, and the application of psychological principles to address recognized disorders such as schizophrenia, mood, anxiety, childhood, substance use, cognitive, and personality disorders. Additionally, the articles also touch upon broader issues that cut across the field, such as diagnosis, treatment, social policy, and cross-cultural and legal issues.
Recently, the current volume of this journal has transitioned from a gated access model to an open access format through the Annual Reviews' Subscribe to Open program. All articles published in this volume are now available under a Creative Commons Attribution License (CC BY), allowing for widespread distribution and use. The journal is also abstracted and indexed in various databases including Scopus, Science Citation Index Expanded, MEDLINE, EMBASE, CINAHL, PsycINFO, and Academic Search, among others.