用潜在变量法理解精神病理学的前景与陷阱:答复伯克和约翰斯顿、艾德、容海纳尔及其同事以及威洛比。

G Leonard Burns, Christian Geiser, Mateu Servera, Stephen P Becker, Theodore P Beauchaine
{"title":"用潜在变量法理解精神病理学的前景与陷阱:答复伯克和约翰斯顿、艾德、容海纳尔及其同事以及威洛比。","authors":"G Leonard Burns, Christian Geiser, Mateu Servera, Stephen P Becker, Theodore P Beauchaine","doi":"10.1007/s10802-020-00656-1","DOIUrl":null,"url":null,"abstract":"<p><p>The commentaries by Burke and Johnston (this issue), Eid (this issue), Junghänel et al. (this issue), and Willoughby (this issue) on Burns et al. (this issue) provide useful context for comparing three latent variable modeling approaches to understanding psychopathology-the correlated first-order syndrome-specific factors model, the bifactor S - 1 model, and the symmetrical bifactor model. The correlated first-order syndrome-specific factors model has proven useful in constructing explanatory models of psychopathology. The bifactor S - 1 model is also useful for examining the latent structure of psychopathology, especially in contexts with clear theoretical predictions. Joint use of correlated first-order syndrome-specific model and bifactor S - 1 model provides leverage for explaining psychopathology, and both models can also guide individual clinical assessment. In this reply, we further clarify reasons why the symmetrical bifactor model should not be used to study the latent structure of psychopathology and also discuss a restricted bifactor S - 1 model that is equivalent to the first-order syndrome-specific factors model.</p>","PeriodicalId":14810,"journal":{"name":"Journal of Abnormal Child Psychology","volume":"48 7","pages":"917-922"},"PeriodicalIF":3.6000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10802-020-00656-1","citationCount":"7","resultStr":"{\"title\":\"Promises and Pitfalls of Latent Variable Approaches to Understanding Psychopathology: Reply to Burke and Johnston, Eid, Junghänel and Colleagues, and Willoughby.\",\"authors\":\"G Leonard Burns, Christian Geiser, Mateu Servera, Stephen P Becker, Theodore P Beauchaine\",\"doi\":\"10.1007/s10802-020-00656-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The commentaries by Burke and Johnston (this issue), Eid (this issue), Junghänel et al. (this issue), and Willoughby (this issue) on Burns et al. (this issue) provide useful context for comparing three latent variable modeling approaches to understanding psychopathology-the correlated first-order syndrome-specific factors model, the bifactor S - 1 model, and the symmetrical bifactor model. The correlated first-order syndrome-specific factors model has proven useful in constructing explanatory models of psychopathology. The bifactor S - 1 model is also useful for examining the latent structure of psychopathology, especially in contexts with clear theoretical predictions. Joint use of correlated first-order syndrome-specific model and bifactor S - 1 model provides leverage for explaining psychopathology, and both models can also guide individual clinical assessment. In this reply, we further clarify reasons why the symmetrical bifactor model should not be used to study the latent structure of psychopathology and also discuss a restricted bifactor S - 1 model that is equivalent to the first-order syndrome-specific factors model.</p>\",\"PeriodicalId\":14810,\"journal\":{\"name\":\"Journal of Abnormal Child Psychology\",\"volume\":\"48 7\",\"pages\":\"917-922\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10802-020-00656-1\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Abnormal Child Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10802-020-00656-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Abnormal Child Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10802-020-00656-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

Burke和Johnston(本期)、Eid(本期)、Junghänel等人(本期)以及Willoughby(本期)对Burns等人(本期)的评论为比较三种潜变量建模方法提供了有用的背景,这些方法可以用来理解精神病理学--相关一阶综合征特定因素模型、双因素S-1模型和对称双因素模型。事实证明,相关一阶综合征特异因素模型在构建精神病理学解释模型方面非常有用。双因子 S - 1 模型也有助于研究精神病理学的潜在结构,尤其是在有明确理论预测的情况下。联合使用相关的一阶综合征特异性模型和双因素 S - 1 模型可以为解释精神病理学提供杠杆作用,而且这两种模型还可以指导个人临床评估。在本回答中,我们进一步阐明了对称双因素模型不应用于研究精神病理学潜在结构的原因,并讨论了与一阶特定综合征因素模型等效的限制性双因素 S - 1 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Promises and Pitfalls of Latent Variable Approaches to Understanding Psychopathology: Reply to Burke and Johnston, Eid, Junghänel and Colleagues, and Willoughby.

The commentaries by Burke and Johnston (this issue), Eid (this issue), Junghänel et al. (this issue), and Willoughby (this issue) on Burns et al. (this issue) provide useful context for comparing three latent variable modeling approaches to understanding psychopathology-the correlated first-order syndrome-specific factors model, the bifactor S - 1 model, and the symmetrical bifactor model. The correlated first-order syndrome-specific factors model has proven useful in constructing explanatory models of psychopathology. The bifactor S - 1 model is also useful for examining the latent structure of psychopathology, especially in contexts with clear theoretical predictions. Joint use of correlated first-order syndrome-specific model and bifactor S - 1 model provides leverage for explaining psychopathology, and both models can also guide individual clinical assessment. In this reply, we further clarify reasons why the symmetrical bifactor model should not be used to study the latent structure of psychopathology and also discuss a restricted bifactor S - 1 model that is equivalent to the first-order syndrome-specific factors model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Research on Child and Adolescent Psychopathology brings together the latest innovative research that advances knowledge of psychopathology from infancy through adolescence. The journal publishes studies that have a strong theoretical framework and use a diversity of methods, with an emphasis on empirical studies of the major forms of psychopathology found in childhood disorders (e.g., disruptive behavior disorders, depression, anxiety, and autism spectrum disorder). Studies focus on the epidemiology, etiology, assessment, treatment, prognosis, and developmental course of these forms of psychopathology. Studies highlighting risk and protective factors; the ecology and correlates of children''s emotional, social, and behavior problems; and advances in prevention and treatment are featured. Research on Child and Adolescent Psychopathology is the official journal of the International Society for Research in Child and Adolescent Psychopathology (ISRCAP), a multidisciplinary scientific society.
期刊最新文献
Reactivity to Peer Rejection Moderates the Effect of Victimization on Adolescent Girls’ Depressive Symptoms: A Prospective Study Temperamental Shyness, Peer Competence, and Loneliness in Middle Childhood: The Role of Positive Emotion Here Comes Revenge: Peer Victimization Relates to Neural and Behavioral Responses to Social Exclusion Impulsive Decision-Making, Affective Experiences, and Parental History of Self-Injurious Thoughts and Behaviors within Parent-Adolescent Dyads Bibliometric Trends and Thematic Areas in Research on Cognitive Disengagement Syndrome in Children: A Comprehensive Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1