蔷薇科肉质果实多样性的发育机制。

IF 21.3 1区 生物学 Q1 PLANT SCIENCES Annual review of plant biology Pub Date : 2020-04-29 DOI:10.1146/annurev-arplant-111119-021700
Zhongchi Liu, Hong Ma, Sook Jung, Dorrie Main, Lei Guo
{"title":"蔷薇科肉质果实多样性的发育机制。","authors":"Zhongchi Liu,&nbsp;Hong Ma,&nbsp;Sook Jung,&nbsp;Dorrie Main,&nbsp;Lei Guo","doi":"10.1146/annurev-arplant-111119-021700","DOIUrl":null,"url":null,"abstract":"<p><p>Rosaceae (the rose family) is an economically important family that includes species prized for high-value fruits and ornamentals. The family also exhibits diverse fruit types, including drupe (peach), pome (apple), drupetum (raspberry), and achenetum (strawberry). Phylogenetic analysis and ancestral fruit-type reconstruction suggest independent evolutionary paths of multiple fleshy fruit types from dry fruits. A recent whole genome duplication in the Maleae/Pyreae tribe (with apple, pear, hawthorn, and close relatives; referred to as Maleae here) may have contributed to the evolution of pome fruit. MADS-box genes, known to regulate floral organ identity, are emerging as important regulators of fruit development. The differential competence of floral organs to respond to fertilization signals may explain the different abilities of floral organs to form fleshy fruit. Future comparative genomics and functional studies in closely related Rosaceae species with distinct fruit types will test hypotheses and provide insights into mechanisms of fleshy fruit diversity. These efforts will be facilitated by the wealth of genome data and resources in Rosaceae.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"71 ","pages":"547-573"},"PeriodicalIF":21.3000,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-arplant-111119-021700","citationCount":"26","resultStr":"{\"title\":\"Developmental Mechanisms of Fleshy Fruit Diversity in Rosaceae.\",\"authors\":\"Zhongchi Liu,&nbsp;Hong Ma,&nbsp;Sook Jung,&nbsp;Dorrie Main,&nbsp;Lei Guo\",\"doi\":\"10.1146/annurev-arplant-111119-021700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rosaceae (the rose family) is an economically important family that includes species prized for high-value fruits and ornamentals. The family also exhibits diverse fruit types, including drupe (peach), pome (apple), drupetum (raspberry), and achenetum (strawberry). Phylogenetic analysis and ancestral fruit-type reconstruction suggest independent evolutionary paths of multiple fleshy fruit types from dry fruits. A recent whole genome duplication in the Maleae/Pyreae tribe (with apple, pear, hawthorn, and close relatives; referred to as Maleae here) may have contributed to the evolution of pome fruit. MADS-box genes, known to regulate floral organ identity, are emerging as important regulators of fruit development. The differential competence of floral organs to respond to fertilization signals may explain the different abilities of floral organs to form fleshy fruit. Future comparative genomics and functional studies in closely related Rosaceae species with distinct fruit types will test hypotheses and provide insights into mechanisms of fleshy fruit diversity. These efforts will be facilitated by the wealth of genome data and resources in Rosaceae.</p>\",\"PeriodicalId\":8335,\"journal\":{\"name\":\"Annual review of plant biology\",\"volume\":\"71 \",\"pages\":\"547-573\"},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2020-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-arplant-111119-021700\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-arplant-111119-021700\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-111119-021700","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 26

摘要

玫瑰科(玫瑰科)是一个经济上重要的科,包括高价值的果实和观赏物种。该家族还展示了多种水果类型,包括核果(桃子),梨果(苹果),树莓(覆盆子)和achenetum(草莓)。系统发育分析和原始果型重建表明,多种肉质果型从干果演化而来,具有独立的进化路径。最近在马来族/比利亚族(苹果、梨、山楂和近亲)中发现的全基因组重复;这里被称为Maleae)可能对梨果实的进化做出了贡献。MADS-box基因是调控花器官特性的重要基因,在果实发育中具有重要的调控作用。花器官响应受精信号的能力差异可能解释了花器官形成肉质果实的能力差异。未来对具有不同果实类型的蔷薇科近缘种的比较基因组学和功能研究将验证假设,并为肉质果实多样性的机制提供见解。玫瑰科丰富的基因组数据和资源将为这些工作提供便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developmental Mechanisms of Fleshy Fruit Diversity in Rosaceae.

Rosaceae (the rose family) is an economically important family that includes species prized for high-value fruits and ornamentals. The family also exhibits diverse fruit types, including drupe (peach), pome (apple), drupetum (raspberry), and achenetum (strawberry). Phylogenetic analysis and ancestral fruit-type reconstruction suggest independent evolutionary paths of multiple fleshy fruit types from dry fruits. A recent whole genome duplication in the Maleae/Pyreae tribe (with apple, pear, hawthorn, and close relatives; referred to as Maleae here) may have contributed to the evolution of pome fruit. MADS-box genes, known to regulate floral organ identity, are emerging as important regulators of fruit development. The differential competence of floral organs to respond to fertilization signals may explain the different abilities of floral organs to form fleshy fruit. Future comparative genomics and functional studies in closely related Rosaceae species with distinct fruit types will test hypotheses and provide insights into mechanisms of fleshy fruit diversity. These efforts will be facilitated by the wealth of genome data and resources in Rosaceae.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of plant biology
Annual review of plant biology 生物-植物科学
CiteScore
40.40
自引率
0.40%
发文量
29
期刊介绍: The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
Adaptation and the Geographic Spread of Crop Species. Environmental Control of Hypocotyl Elongation. Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. Structure and Function of Auxin Transporters. Structural and Evolutionary Aspects of Plant Endocytosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1