蜂胶改性汞合金会改变其物理力学性能吗?一项体外研究

IF 3 Q3 MATERIALS SCIENCE, BIOMATERIALS International Journal of Biomaterials Pub Date : 2020-05-11 eCollection Date: 2020-01-01 DOI:10.1155/2020/3180879
Reham M Abdallah, Amr M Abdelghany, Neven S Aref
{"title":"蜂胶改性汞合金会改变其物理力学性能吗?一项体外研究","authors":"Reham M Abdallah,&nbsp;Amr M Abdelghany,&nbsp;Neven S Aref","doi":"10.1155/2020/3180879","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To assess if incorporating ethanolic extract of propolis into ceramic-reinforced glass ionomer (Amalgomer CR) might have an influence on its physicomechanical properties.</p><p><strong>Materials and methods: </strong>Three groups were assessed; group I: Amalgomer CR (control) and two experimental groups (II and III) of propolis added to the liquid of Amalgomer CR with 25 and 50 v/v %, respectively. Evaluation parameters were color stability, compressive strength, microhardness, and surface roughness. Representative specimens of each group were analyzed by Fourier-transform infrared spectroscopy, energy-dispersive X-ray, X-ray diffraction, and scanning electron microscopy. Analysis of variance (ANOVA) was used to compare the results, followed by a Tukey post hoc test (<i>p</i> < 0.05).</p><p><strong>Results: </strong>Nonsignificant color change for both groups of modified Amalgomer CR. Meanwhile, the two experimental groups exhibited a significant increase in both compressive strength and microhardness. Simultaneously, there was a significant difference in roughness values among groups with the lowest roughness values exhibited by the 50 v/v % propolis concentration.</p><p><strong>Conclusions: </strong>Modification of Amalgomer CR with 50 v/v % propolis may increase its mechanical properties without compromising its esthetic. <i>Clinical Significance</i>. Modification of Amalgomer CR by 50 v/v % propolis is supposed to be a hopeful restorative material with favorable characteristics.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2020 ","pages":"3180879"},"PeriodicalIF":3.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/3180879","citationCount":"4","resultStr":"{\"title\":\"Does Modification of Amalgomer with Propolis Alter Its Physicomechanical Properties? An In Vitro Study.\",\"authors\":\"Reham M Abdallah,&nbsp;Amr M Abdelghany,&nbsp;Neven S Aref\",\"doi\":\"10.1155/2020/3180879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To assess if incorporating ethanolic extract of propolis into ceramic-reinforced glass ionomer (Amalgomer CR) might have an influence on its physicomechanical properties.</p><p><strong>Materials and methods: </strong>Three groups were assessed; group I: Amalgomer CR (control) and two experimental groups (II and III) of propolis added to the liquid of Amalgomer CR with 25 and 50 v/v %, respectively. Evaluation parameters were color stability, compressive strength, microhardness, and surface roughness. Representative specimens of each group were analyzed by Fourier-transform infrared spectroscopy, energy-dispersive X-ray, X-ray diffraction, and scanning electron microscopy. Analysis of variance (ANOVA) was used to compare the results, followed by a Tukey post hoc test (<i>p</i> < 0.05).</p><p><strong>Results: </strong>Nonsignificant color change for both groups of modified Amalgomer CR. Meanwhile, the two experimental groups exhibited a significant increase in both compressive strength and microhardness. Simultaneously, there was a significant difference in roughness values among groups with the lowest roughness values exhibited by the 50 v/v % propolis concentration.</p><p><strong>Conclusions: </strong>Modification of Amalgomer CR with 50 v/v % propolis may increase its mechanical properties without compromising its esthetic. <i>Clinical Significance</i>. Modification of Amalgomer CR by 50 v/v % propolis is supposed to be a hopeful restorative material with favorable characteristics.</p>\",\"PeriodicalId\":13704,\"journal\":{\"name\":\"International Journal of Biomaterials\",\"volume\":\"2020 \",\"pages\":\"3180879\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/3180879\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/3180879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/3180879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

摘要

目的:探讨蜂胶乙醇提取物对陶瓷增强玻璃离子聚合物(汞合金CR)物理力学性能的影响。材料与方法:分为三组;第一组:汞汞合金CR(对照),第二、三组实验组:蜂胶分别以25、50 v/v %加入汞汞合金CR液中。评价参数为颜色稳定性、抗压强度、显微硬度和表面粗糙度。采用傅里叶变换红外光谱、能量色散x射线、x射线衍射、扫描电镜等方法对各组代表性标本进行分析。采用方差分析(ANOVA)对结果进行比较,并进行Tukey事后检验(p < 0.05)。结果:两组改性铬汞合金的颜色变化不明显,同时两组的抗压强度和显微硬度均有显著提高。同时,蜂胶浓度为50 v/v %时粗糙度值最低,各组间粗糙度值差异显著。结论:用50v /v %蜂胶改性铬汞合金可提高其力学性能,但不影响其美观性。临床意义。用50v /v的蜂胶改性汞合金CR是一种具有良好性能的有希望的修复材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Does Modification of Amalgomer with Propolis Alter Its Physicomechanical Properties? An In Vitro Study.

Objective: To assess if incorporating ethanolic extract of propolis into ceramic-reinforced glass ionomer (Amalgomer CR) might have an influence on its physicomechanical properties.

Materials and methods: Three groups were assessed; group I: Amalgomer CR (control) and two experimental groups (II and III) of propolis added to the liquid of Amalgomer CR with 25 and 50 v/v %, respectively. Evaluation parameters were color stability, compressive strength, microhardness, and surface roughness. Representative specimens of each group were analyzed by Fourier-transform infrared spectroscopy, energy-dispersive X-ray, X-ray diffraction, and scanning electron microscopy. Analysis of variance (ANOVA) was used to compare the results, followed by a Tukey post hoc test (p < 0.05).

Results: Nonsignificant color change for both groups of modified Amalgomer CR. Meanwhile, the two experimental groups exhibited a significant increase in both compressive strength and microhardness. Simultaneously, there was a significant difference in roughness values among groups with the lowest roughness values exhibited by the 50 v/v % propolis concentration.

Conclusions: Modification of Amalgomer CR with 50 v/v % propolis may increase its mechanical properties without compromising its esthetic. Clinical Significance. Modification of Amalgomer CR by 50 v/v % propolis is supposed to be a hopeful restorative material with favorable characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biomaterials
International Journal of Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
4.30
自引率
3.20%
发文量
50
审稿时长
21 weeks
期刊最新文献
Application of Titanium Mesh in the Early Treatment of Flail Chest. Synthesis of Calcium Phosphate by Microwave Hydrothermal Method: Physicochemical and Morphological Characterization. Isolation of B Cells Using Silane-Coated Magnetic Nanoparticles. Evaluation of Microleakage of Orthograde Root-Filling Materials in Immature Permanent Teeth: An In Vitro Study. Production of Composite Briquette Fuel from Brewery Wastewater Sludge and Spent Grains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1