{"title":"陆地和水生食草-生产者系统的化学计量动力学对比。","authors":"Colleen M Davies, Hao Wang","doi":"10.1080/17513758.2020.1771442","DOIUrl":null,"url":null,"abstract":"<p><p>The turnover rate of producer biomass in aquatic ecosystems is generally faster than in terrestrial. That is, aquatic producer biomass grows, is consumed, and is replaced considerably faster than terrestrial. The WKL model describes the flow of phosphorus and carbon through a grazer-producer system, hence varying the model parameters allows for analysis of different ecosystems of this type. Here we explore the impacts of the intrinsic growth rate of the producer and the maximal ingestion rate of the grazer on these dynamics because these parameters determine turnover rate. Simulations show that for low intrinsic growth rate and maximal ingestion rate, the grazer goes extinct; for higher values of these parameters, coexistence occurs in oscillations. Sensitivity analysis reveals the relative importance of all parameters on asymptotic dynamics. Lastly, the impacts of changing these two parameters in the LKE model appears to be quantitatively similar to the impacts in the WKL model.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1771442","citationCount":"3","resultStr":"{\"title\":\"Contrasting stoichiometric dynamics in terrestrial and aquatic grazer-producer systems.\",\"authors\":\"Colleen M Davies, Hao Wang\",\"doi\":\"10.1080/17513758.2020.1771442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The turnover rate of producer biomass in aquatic ecosystems is generally faster than in terrestrial. That is, aquatic producer biomass grows, is consumed, and is replaced considerably faster than terrestrial. The WKL model describes the flow of phosphorus and carbon through a grazer-producer system, hence varying the model parameters allows for analysis of different ecosystems of this type. Here we explore the impacts of the intrinsic growth rate of the producer and the maximal ingestion rate of the grazer on these dynamics because these parameters determine turnover rate. Simulations show that for low intrinsic growth rate and maximal ingestion rate, the grazer goes extinct; for higher values of these parameters, coexistence occurs in oscillations. Sensitivity analysis reveals the relative importance of all parameters on asymptotic dynamics. Lastly, the impacts of changing these two parameters in the LKE model appears to be quantitatively similar to the impacts in the WKL model.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17513758.2020.1771442\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2020.1771442\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2020.1771442","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Contrasting stoichiometric dynamics in terrestrial and aquatic grazer-producer systems.
The turnover rate of producer biomass in aquatic ecosystems is generally faster than in terrestrial. That is, aquatic producer biomass grows, is consumed, and is replaced considerably faster than terrestrial. The WKL model describes the flow of phosphorus and carbon through a grazer-producer system, hence varying the model parameters allows for analysis of different ecosystems of this type. Here we explore the impacts of the intrinsic growth rate of the producer and the maximal ingestion rate of the grazer on these dynamics because these parameters determine turnover rate. Simulations show that for low intrinsic growth rate and maximal ingestion rate, the grazer goes extinct; for higher values of these parameters, coexistence occurs in oscillations. Sensitivity analysis reveals the relative importance of all parameters on asymptotic dynamics. Lastly, the impacts of changing these two parameters in the LKE model appears to be quantitatively similar to the impacts in the WKL model.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.