整合文献知识库与表达数据探索PPARG与心肌梗死的分子通路。

IF 3.5 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL PPAR Research Pub Date : 2020-06-01 eCollection Date: 2020-01-01 DOI:10.1155/2020/1892375
Rongyuan Cao, Yan Dong, Kamil Can Kural
{"title":"整合文献知识库与表达数据探索PPARG与心肌梗死的分子通路。","authors":"Rongyuan Cao,&nbsp;Yan Dong,&nbsp;Kamil Can Kural","doi":"10.1155/2020/1892375","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxisome proliferator-activated receptor <i>γ</i> (PPARG) might play a protective role in the development of myocardial infarction (MI) with limited mechanisms identified. Genes associated with both PPARG and MI were extracted from Elsevier Pathway Studio to construct the initial network. The gene expression activity within the network was estimated through a mega-analysis with eight independent expression datasets derived from Gene Expression Omnibus (GEO) to build PPARG and MI connecting pathways. After that, gene set enrichment analysis (GSEA) was conducted to explore the functional profile of the genes involved in the PPARG-driven network. PPARG demonstrated a significantly low expression in MI patients (LFC = -0.52; <i>p</i> < 1.84<i>e</i> - 9). Consequently, PPARG could indicatively be promoting three MI inhibitors (e.g., SOD1, CAV1, and POU5F1) and three MI-downregulated markers (e.g., ALB, ACADM, and ADIPOR2), which were deactivated in MI cases (<i>p</i> < 0.05), and inhibit two MI-upregulated markers (RELA and MYD88), which showed increased expression levels in MI cases (<i>p</i> = 0.0077 and 0.047, respectively). These eight genes were mainly enriched in nutrient- and cell metabolic-related pathways and functionally linked by GSEA and PPCN. Our results suggest that PPARG could protect the heart against both the development and progress of MI through the regulation of nutrient- and metabolic-related pathways.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2020 ","pages":"1892375"},"PeriodicalIF":3.5000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/1892375","citationCount":"2","resultStr":"{\"title\":\"Integrating Literature-Based Knowledge Database and Expression Data to Explore Molecular Pathways Connecting PPARG and Myocardial Infarction.\",\"authors\":\"Rongyuan Cao,&nbsp;Yan Dong,&nbsp;Kamil Can Kural\",\"doi\":\"10.1155/2020/1892375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peroxisome proliferator-activated receptor <i>γ</i> (PPARG) might play a protective role in the development of myocardial infarction (MI) with limited mechanisms identified. Genes associated with both PPARG and MI were extracted from Elsevier Pathway Studio to construct the initial network. The gene expression activity within the network was estimated through a mega-analysis with eight independent expression datasets derived from Gene Expression Omnibus (GEO) to build PPARG and MI connecting pathways. After that, gene set enrichment analysis (GSEA) was conducted to explore the functional profile of the genes involved in the PPARG-driven network. PPARG demonstrated a significantly low expression in MI patients (LFC = -0.52; <i>p</i> < 1.84<i>e</i> - 9). Consequently, PPARG could indicatively be promoting three MI inhibitors (e.g., SOD1, CAV1, and POU5F1) and three MI-downregulated markers (e.g., ALB, ACADM, and ADIPOR2), which were deactivated in MI cases (<i>p</i> < 0.05), and inhibit two MI-upregulated markers (RELA and MYD88), which showed increased expression levels in MI cases (<i>p</i> = 0.0077 and 0.047, respectively). These eight genes were mainly enriched in nutrient- and cell metabolic-related pathways and functionally linked by GSEA and PPCN. Our results suggest that PPARG could protect the heart against both the development and progress of MI through the regulation of nutrient- and metabolic-related pathways.</p>\",\"PeriodicalId\":20439,\"journal\":{\"name\":\"PPAR Research\",\"volume\":\"2020 \",\"pages\":\"1892375\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/1892375\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PPAR Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/1892375\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAR Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2020/1892375","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2

摘要

过氧化物酶体增殖物激活受体γ (PPARG)可能在心肌梗死(MI)的发展中发挥保护作用,但机制有限。从Elsevier Pathway Studio中提取与PPARG和MI相关的基因,构建初始网络。通过对来自gene expression Omnibus (GEO)的8个独立表达数据集进行大型分析,估计网络内的基因表达活性,以构建PPARG和MI连接通路。之后,进行基因集富集分析(GSEA)来探索参与ppar驱动网络的基因的功能谱。PPARG在心肌梗死患者中低表达(LFC = -0.52;p < 1.84e - 9)。因此,PPARG可以指示性地促进三种MI抑制剂(如SOD1, CAV1和POU5F1)和三种MI下调标志物(如ALB, ACADM和ADIPOR2),这些标志物在MI病例中失活(p < 0.05),并抑制两种MI上调标志物(RELA和MYD88),它们在MI病例中表达水平升高(p分别= 0.0077和0.047)。这8个基因主要富集于营养和细胞代谢相关通路中,并与GSEA和PPCN有功能联系。我们的研究结果表明,PPARG可以通过调节营养和代谢相关途径来保护心脏免受心肌梗死的发生和进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating Literature-Based Knowledge Database and Expression Data to Explore Molecular Pathways Connecting PPARG and Myocardial Infarction.

Peroxisome proliferator-activated receptor γ (PPARG) might play a protective role in the development of myocardial infarction (MI) with limited mechanisms identified. Genes associated with both PPARG and MI were extracted from Elsevier Pathway Studio to construct the initial network. The gene expression activity within the network was estimated through a mega-analysis with eight independent expression datasets derived from Gene Expression Omnibus (GEO) to build PPARG and MI connecting pathways. After that, gene set enrichment analysis (GSEA) was conducted to explore the functional profile of the genes involved in the PPARG-driven network. PPARG demonstrated a significantly low expression in MI patients (LFC = -0.52; p < 1.84e - 9). Consequently, PPARG could indicatively be promoting three MI inhibitors (e.g., SOD1, CAV1, and POU5F1) and three MI-downregulated markers (e.g., ALB, ACADM, and ADIPOR2), which were deactivated in MI cases (p < 0.05), and inhibit two MI-upregulated markers (RELA and MYD88), which showed increased expression levels in MI cases (p = 0.0077 and 0.047, respectively). These eight genes were mainly enriched in nutrient- and cell metabolic-related pathways and functionally linked by GSEA and PPCN. Our results suggest that PPARG could protect the heart against both the development and progress of MI through the regulation of nutrient- and metabolic-related pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PPAR Research
PPAR Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.20
自引率
3.40%
发文量
17
审稿时长
12 months
期刊介绍: PPAR Research is a peer-reviewed, Open Access journal that publishes original research and review articles on advances in basic research focusing on mechanisms involved in the activation of peroxisome proliferator-activated receptors (PPARs), as well as their role in the regulation of cellular differentiation, development, energy homeostasis and metabolic function. The journal also welcomes preclinical and clinical trials of drugs that can modulate PPAR activity, with a view to treating chronic diseases and disorders such as dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, and obesity.
期刊最新文献
Systemic and Lung Inflammation and Oxidative Stress Associated With Behavioral Changes Induced by Inhaled Paraquat Are Ameliorated by Carvacrol. Interaction between Nuclear Receptor and Alpha-Adrenergic Agonist Subtypes in Metabolism and Systemic Hemodynamics of Spontaneously Hypertensive Rats. Shared Mechanisms in Pparγ1sv and Pparγ2 Expression in 3T3-L1 Cells: Studies on Epigenetic and Positive Feedback Regulation of Pparγ during Adipogenesis. PPARG and the PTEN-PI3K/AKT Signaling Axis May Cofunction in Promoting Chemosensitivity in Hypopharyngeal Squamous Cell Carcinoma Peroxisome Proliferator-Activated Receptor γ Regulates Lipid Metabolism in Sheep Trophoblast Cells through mTOR Pathway-Mediated Autophagy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1