Fu-Shuang Dong, Meng-Yu Lv, Jin-Ping Wang, Xue-Ping Shi, Xin-Xia Liang, Yong-Wei Liu, Fan Yang, He Zhao, Jian-Fang Chai, Shuo Zhou
{"title":"组织培养中活性炭促进小麦幼苗生长的转录组分析。","authors":"Fu-Shuang Dong, Meng-Yu Lv, Jin-Ping Wang, Xue-Ping Shi, Xin-Xia Liang, Yong-Wei Liu, Fan Yang, He Zhao, Jian-Fang Chai, Shuo Zhou","doi":"10.1186/s12863-020-00877-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Activated charcoal (AC) is highly adsorbent and is often used to promote seedling growth in plant tissue culture; however, the underlying molecular mechanism remains unclear. In this study, root and leaf tissues of 10-day-old seedlings grown via immature embryo culture in the presence or absence of AC in the culture medium were subjected to global transcriptome analysis by RNA sequencing to provide insights into the effects of AC on seedling growth.</p><p><strong>Results: </strong>In total, we identified 18,555 differentially expressed genes (DEGs). Of these, 11,182 were detected in the roots and 7373 in the leaves. In seedlings grown in the presence of AC, 9460 DEGs were upregulated and 7483 DEGs were downregulated in the presence of AC as compared to the control. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed 254 DEG-enriched pathways, 226 of which were common between roots and leaves. Further analysis of the major metabolic pathways revealed that AC stimulated the expression of nine genes in the phenylpropanoid biosynthesis pathway, including PLA, CYP73A, COMT, CYP84A, and 4CL, the protein products of which promote cell differentiation and seedling growth. Further, AC upregulated genes involved in plant hormone signaling related to stress resistance and disease resistance, including EIN3, BZR1, JAR1, JAZ, and PR1, and downregulated genes related to plant growth inhibition, including BKI1, ARR-B, DELLA, and ABF.</p><p><strong>Conclusions: </strong>Growth medium containing AC promotes seedling growth by increasing the expression of certain genes in the phenylpropanoid biosynthesis pathway, which are related to cell differentiation and seedling growth, as well as genes involved in plant hormone signaling, which is related to resistance.</p>","PeriodicalId":9197,"journal":{"name":"BMC Genetics","volume":" ","pages":"69"},"PeriodicalIF":2.9000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12863-020-00877-9","citationCount":"8","resultStr":"{\"title\":\"Transcriptome analysis of activated charcoal-induced growth promotion of wheat seedlings in tissue culture.\",\"authors\":\"Fu-Shuang Dong, Meng-Yu Lv, Jin-Ping Wang, Xue-Ping Shi, Xin-Xia Liang, Yong-Wei Liu, Fan Yang, He Zhao, Jian-Fang Chai, Shuo Zhou\",\"doi\":\"10.1186/s12863-020-00877-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Activated charcoal (AC) is highly adsorbent and is often used to promote seedling growth in plant tissue culture; however, the underlying molecular mechanism remains unclear. In this study, root and leaf tissues of 10-day-old seedlings grown via immature embryo culture in the presence or absence of AC in the culture medium were subjected to global transcriptome analysis by RNA sequencing to provide insights into the effects of AC on seedling growth.</p><p><strong>Results: </strong>In total, we identified 18,555 differentially expressed genes (DEGs). Of these, 11,182 were detected in the roots and 7373 in the leaves. In seedlings grown in the presence of AC, 9460 DEGs were upregulated and 7483 DEGs were downregulated in the presence of AC as compared to the control. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed 254 DEG-enriched pathways, 226 of which were common between roots and leaves. Further analysis of the major metabolic pathways revealed that AC stimulated the expression of nine genes in the phenylpropanoid biosynthesis pathway, including PLA, CYP73A, COMT, CYP84A, and 4CL, the protein products of which promote cell differentiation and seedling growth. Further, AC upregulated genes involved in plant hormone signaling related to stress resistance and disease resistance, including EIN3, BZR1, JAR1, JAZ, and PR1, and downregulated genes related to plant growth inhibition, including BKI1, ARR-B, DELLA, and ABF.</p><p><strong>Conclusions: </strong>Growth medium containing AC promotes seedling growth by increasing the expression of certain genes in the phenylpropanoid biosynthesis pathway, which are related to cell differentiation and seedling growth, as well as genes involved in plant hormone signaling, which is related to resistance.</p>\",\"PeriodicalId\":9197,\"journal\":{\"name\":\"BMC Genetics\",\"volume\":\" \",\"pages\":\"69\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2020-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12863-020-00877-9\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12863-020-00877-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12863-020-00877-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Transcriptome analysis of activated charcoal-induced growth promotion of wheat seedlings in tissue culture.
Background: Activated charcoal (AC) is highly adsorbent and is often used to promote seedling growth in plant tissue culture; however, the underlying molecular mechanism remains unclear. In this study, root and leaf tissues of 10-day-old seedlings grown via immature embryo culture in the presence or absence of AC in the culture medium were subjected to global transcriptome analysis by RNA sequencing to provide insights into the effects of AC on seedling growth.
Results: In total, we identified 18,555 differentially expressed genes (DEGs). Of these, 11,182 were detected in the roots and 7373 in the leaves. In seedlings grown in the presence of AC, 9460 DEGs were upregulated and 7483 DEGs were downregulated in the presence of AC as compared to the control. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed 254 DEG-enriched pathways, 226 of which were common between roots and leaves. Further analysis of the major metabolic pathways revealed that AC stimulated the expression of nine genes in the phenylpropanoid biosynthesis pathway, including PLA, CYP73A, COMT, CYP84A, and 4CL, the protein products of which promote cell differentiation and seedling growth. Further, AC upregulated genes involved in plant hormone signaling related to stress resistance and disease resistance, including EIN3, BZR1, JAR1, JAZ, and PR1, and downregulated genes related to plant growth inhibition, including BKI1, ARR-B, DELLA, and ABF.
Conclusions: Growth medium containing AC promotes seedling growth by increasing the expression of certain genes in the phenylpropanoid biosynthesis pathway, which are related to cell differentiation and seedling growth, as well as genes involved in plant hormone signaling, which is related to resistance.
期刊介绍:
BMC Genetics is an open access, peer-reviewed journal that considers articles on all aspects of inheritance and variation in individuals and among populations.