{"title":"澳大利亚为减少氡对健康的危害而采取的行动。","authors":"S A Long, R A Tinker","doi":"10.1177/0146645320931983","DOIUrl":null,"url":null,"abstract":"<p><p>In Australia, worker exposure to radon in underground uranium mines has been a focus of policy makers and regulators, and has been well controlled in the industry sector. That cannot be said for public exposure to radon. Radon exposure studies in the late 1980s and early 1990s demonstrated that the levels of radon in Australian homes were some of the lowest in the world. The International Basic Safety Standards, published by the International Atomic Energy Agency, requires the government to establish and implement an action plan for controlling public exposure due to radon indoors. When considering different policy options, it is important to develop radon prevention and mitigation programmes reflecting elements that are unique to the region or country. The Australian Radon Action Plan is being considered at a national level, and presents a long-range strategy designed to reduce radon-induced lung cancer in Australia, as well as the individual risk for people living with high concentrations of radon. In Australia, workers who are not currently designated as occupationally exposed are also considered as members of the public. In the Australian context, there are only a limited set of scenarios that might give rise to sufficiently high radon concentrations that warrant mitigation. These include highly energy efficient buildings in areas of high radon potential, underground workplaces, workplaces with elevated radon concentrations (e.g. spas using natural spring waters), and enclosed workspaces with limited ventilation. The key elements for a successful plan will rely on collaboration between government sectors and other health promotion programmes, cooperative efforts involving technical and communication experts, and partnering with building professionals and other stakeholders involved in the implementation of radon prevention and mitigation.</p>","PeriodicalId":39551,"journal":{"name":"Annals of the ICRP","volume":"49 1_suppl","pages":"77-83"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0146645320931983","citationCount":"1","resultStr":"{\"title\":\"Australian action to reduce health risks from radon.\",\"authors\":\"S A Long, R A Tinker\",\"doi\":\"10.1177/0146645320931983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Australia, worker exposure to radon in underground uranium mines has been a focus of policy makers and regulators, and has been well controlled in the industry sector. That cannot be said for public exposure to radon. Radon exposure studies in the late 1980s and early 1990s demonstrated that the levels of radon in Australian homes were some of the lowest in the world. The International Basic Safety Standards, published by the International Atomic Energy Agency, requires the government to establish and implement an action plan for controlling public exposure due to radon indoors. When considering different policy options, it is important to develop radon prevention and mitigation programmes reflecting elements that are unique to the region or country. The Australian Radon Action Plan is being considered at a national level, and presents a long-range strategy designed to reduce radon-induced lung cancer in Australia, as well as the individual risk for people living with high concentrations of radon. In Australia, workers who are not currently designated as occupationally exposed are also considered as members of the public. In the Australian context, there are only a limited set of scenarios that might give rise to sufficiently high radon concentrations that warrant mitigation. These include highly energy efficient buildings in areas of high radon potential, underground workplaces, workplaces with elevated radon concentrations (e.g. spas using natural spring waters), and enclosed workspaces with limited ventilation. The key elements for a successful plan will rely on collaboration between government sectors and other health promotion programmes, cooperative efforts involving technical and communication experts, and partnering with building professionals and other stakeholders involved in the implementation of radon prevention and mitigation.</p>\",\"PeriodicalId\":39551,\"journal\":{\"name\":\"Annals of the ICRP\",\"volume\":\"49 1_suppl\",\"pages\":\"77-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0146645320931983\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the ICRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0146645320931983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the ICRP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0146645320931983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Australian action to reduce health risks from radon.
In Australia, worker exposure to radon in underground uranium mines has been a focus of policy makers and regulators, and has been well controlled in the industry sector. That cannot be said for public exposure to radon. Radon exposure studies in the late 1980s and early 1990s demonstrated that the levels of radon in Australian homes were some of the lowest in the world. The International Basic Safety Standards, published by the International Atomic Energy Agency, requires the government to establish and implement an action plan for controlling public exposure due to radon indoors. When considering different policy options, it is important to develop radon prevention and mitigation programmes reflecting elements that are unique to the region or country. The Australian Radon Action Plan is being considered at a national level, and presents a long-range strategy designed to reduce radon-induced lung cancer in Australia, as well as the individual risk for people living with high concentrations of radon. In Australia, workers who are not currently designated as occupationally exposed are also considered as members of the public. In the Australian context, there are only a limited set of scenarios that might give rise to sufficiently high radon concentrations that warrant mitigation. These include highly energy efficient buildings in areas of high radon potential, underground workplaces, workplaces with elevated radon concentrations (e.g. spas using natural spring waters), and enclosed workspaces with limited ventilation. The key elements for a successful plan will rely on collaboration between government sectors and other health promotion programmes, cooperative efforts involving technical and communication experts, and partnering with building professionals and other stakeholders involved in the implementation of radon prevention and mitigation.
Annals of the ICRPMedicine-Public Health, Environmental and Occupational Health
CiteScore
4.10
自引率
0.00%
发文量
3
期刊介绍:
The International Commission on Radiological Protection was founded in 1928 to advance for the public benefit the science of radiological protection. The ICRP provides recommendations and guidance on protection against the risks associated with ionising radiation, from artificial sources as widely used in medicine, general industry and nuclear enterprises, and from naturally occurring sources. These reports and recommendations are published six times each year on behalf of the ICRP as the journal Annals of the ICRP. Each issue provides in-depth coverage of a specific subject area.