Benedikt Kremer, Mark Coburn, Agnieszka Weinandy, Kay Nolte, Hans Clusmann, Michael Veldeman, Anke Höllig
{"title":"氩气治疗实验性蛛网膜下腔出血后:评价小胶质细胞活化和神经元存活作为一个随机对照动物试验的亚分析。","authors":"Benedikt Kremer, Mark Coburn, Agnieszka Weinandy, Kay Nolte, Hans Clusmann, Michael Veldeman, Anke Höllig","doi":"10.4103/2045-9912.296039","DOIUrl":null,"url":null,"abstract":"<p><p>Hereinafter, we evaluate argon's neuroprotective and immunomodulatory properties after experimental subarachnoid hemorrhage (SAH) examining various localizations (hippocampal and cortical regions) with respect to neuronal damage and microglial activation 6, 24 and 72 hours after SAH. One hour after SAH (endovascular perforation rat model) or sham surgery, a mixture of gas containing 50% argon (argon group) or 50% nitrogen (control group) was applied for 1 hour. At 6 hours after SAH, argon reduced neuronal damage in the hippocampal regions in the argon group compared to the control group (P < 0.034). Hippocampal microglial activation did not differ between the treatment groups over time. The basal cortical regions did not show a different lesion pattern, but microglial activation was significantly reduced in the argon group 72 hours after SAH (P = 0.034 vs. control group). Whereas callosal microglial activation was significantly reduced at 24 hours in the argon-treated group (P = 0.018). Argon treatment ameliorated only early hippocampal neuronal damage after SAH. Inhibition of microglial activation was seen in some areas later on. Thus, argon may influence the microglial inflammatory response and neuronal survival after SAH; however, due to low sample sizes the interpretation of our results is limited. The study protocol was approved by the Government Agency for Animal Use and Protection (Protocol number: TVA 10416G1; initially approved by the \"Landesamt für Natur, Umwelt und Verbraucherschutz NRW,\" Recklinghausen, Germany, on April 28, 2009).</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"10 3","pages":"103-109"},"PeriodicalIF":3.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/03/MGR-10-103.PMC8086619.pdf","citationCount":"8","resultStr":"{\"title\":\"Argon treatment after experimental subarachnoid hemorrhage: evaluation of microglial activation and neuronal survival as a subanalysis of a randomized controlled animal trial.\",\"authors\":\"Benedikt Kremer, Mark Coburn, Agnieszka Weinandy, Kay Nolte, Hans Clusmann, Michael Veldeman, Anke Höllig\",\"doi\":\"10.4103/2045-9912.296039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hereinafter, we evaluate argon's neuroprotective and immunomodulatory properties after experimental subarachnoid hemorrhage (SAH) examining various localizations (hippocampal and cortical regions) with respect to neuronal damage and microglial activation 6, 24 and 72 hours after SAH. One hour after SAH (endovascular perforation rat model) or sham surgery, a mixture of gas containing 50% argon (argon group) or 50% nitrogen (control group) was applied for 1 hour. At 6 hours after SAH, argon reduced neuronal damage in the hippocampal regions in the argon group compared to the control group (P < 0.034). Hippocampal microglial activation did not differ between the treatment groups over time. The basal cortical regions did not show a different lesion pattern, but microglial activation was significantly reduced in the argon group 72 hours after SAH (P = 0.034 vs. control group). Whereas callosal microglial activation was significantly reduced at 24 hours in the argon-treated group (P = 0.018). Argon treatment ameliorated only early hippocampal neuronal damage after SAH. Inhibition of microglial activation was seen in some areas later on. Thus, argon may influence the microglial inflammatory response and neuronal survival after SAH; however, due to low sample sizes the interpretation of our results is limited. The study protocol was approved by the Government Agency for Animal Use and Protection (Protocol number: TVA 10416G1; initially approved by the \\\"Landesamt für Natur, Umwelt und Verbraucherschutz NRW,\\\" Recklinghausen, Germany, on April 28, 2009).</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":\"10 3\",\"pages\":\"103-109\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/03/MGR-10-103.PMC8086619.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2045-9912.296039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2045-9912.296039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Argon treatment after experimental subarachnoid hemorrhage: evaluation of microglial activation and neuronal survival as a subanalysis of a randomized controlled animal trial.
Hereinafter, we evaluate argon's neuroprotective and immunomodulatory properties after experimental subarachnoid hemorrhage (SAH) examining various localizations (hippocampal and cortical regions) with respect to neuronal damage and microglial activation 6, 24 and 72 hours after SAH. One hour after SAH (endovascular perforation rat model) or sham surgery, a mixture of gas containing 50% argon (argon group) or 50% nitrogen (control group) was applied for 1 hour. At 6 hours after SAH, argon reduced neuronal damage in the hippocampal regions in the argon group compared to the control group (P < 0.034). Hippocampal microglial activation did not differ between the treatment groups over time. The basal cortical regions did not show a different lesion pattern, but microglial activation was significantly reduced in the argon group 72 hours after SAH (P = 0.034 vs. control group). Whereas callosal microglial activation was significantly reduced at 24 hours in the argon-treated group (P = 0.018). Argon treatment ameliorated only early hippocampal neuronal damage after SAH. Inhibition of microglial activation was seen in some areas later on. Thus, argon may influence the microglial inflammatory response and neuronal survival after SAH; however, due to low sample sizes the interpretation of our results is limited. The study protocol was approved by the Government Agency for Animal Use and Protection (Protocol number: TVA 10416G1; initially approved by the "Landesamt für Natur, Umwelt und Verbraucherschutz NRW," Recklinghausen, Germany, on April 28, 2009).
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.