无阈值的时空事件序列发现。

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Geoinformatica Pub Date : 2021-01-01 Epub Date: 2020-11-09 DOI:10.1007/s10707-020-00427-6
Berkay Aydin, Soukaina Filali Boubrahimi, Ahmet Kucuk, Bita Nezamdoust, Rafal A Angryk
{"title":"无阈值的时空事件序列发现。","authors":"Berkay Aydin,&nbsp;Soukaina Filali Boubrahimi,&nbsp;Ahmet Kucuk,&nbsp;Bita Nezamdoust,&nbsp;Rafal A Angryk","doi":"10.1007/s10707-020-00427-6","DOIUrl":null,"url":null,"abstract":"<p><p>Spatiotemporal event sequences (STESs) are the ordered series of event types whose instances frequently follow each other in time and are located close-by. An STES is a spatiotemporal frequent pattern type, which is discovered from moving region objects whose polygon-based locations continiously evolve over time. Previous studies on STES mining require significance and prevalence thresholds for the discovery, which is usually unknown to domain experts. The quality of the discovered sequences is of great importance to the domain experts who use these algorithms. We introduce a novel algorithm to find the most relevant STESs without threshold values. We tested the relevance and performance of our threshold-free algorithm with a case study on solar event metadata, and compared the results with the previous STES mining algorithms.</p>","PeriodicalId":55109,"journal":{"name":"Geoinformatica","volume":"25 1","pages":"149-177"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10707-020-00427-6","citationCount":"2","resultStr":"{\"title\":\"Spatiotemporal event sequence discovery without thresholds.\",\"authors\":\"Berkay Aydin,&nbsp;Soukaina Filali Boubrahimi,&nbsp;Ahmet Kucuk,&nbsp;Bita Nezamdoust,&nbsp;Rafal A Angryk\",\"doi\":\"10.1007/s10707-020-00427-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatiotemporal event sequences (STESs) are the ordered series of event types whose instances frequently follow each other in time and are located close-by. An STES is a spatiotemporal frequent pattern type, which is discovered from moving region objects whose polygon-based locations continiously evolve over time. Previous studies on STES mining require significance and prevalence thresholds for the discovery, which is usually unknown to domain experts. The quality of the discovered sequences is of great importance to the domain experts who use these algorithms. We introduce a novel algorithm to find the most relevant STESs without threshold values. We tested the relevance and performance of our threshold-free algorithm with a case study on solar event metadata, and compared the results with the previous STES mining algorithms.</p>\",\"PeriodicalId\":55109,\"journal\":{\"name\":\"Geoinformatica\",\"volume\":\"25 1\",\"pages\":\"149-177\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10707-020-00427-6\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoinformatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10707-020-00427-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoinformatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10707-020-00427-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

时空事件序列(spatial - temporal event sequence, ess)是事件类型的有序序列,这些事件类型的实例在时间上经常相互跟随,并且位置很近。STES是一种时空频繁模式类型,它是从运动区域对象中发现的,这些区域对象的多边形位置随着时间的推移而不断变化。以往的STES挖掘研究要求发现的显著性和流行阈值,这通常是领域专家所不知道的。对于使用这些算法的领域专家来说,发现序列的质量是非常重要的。我们引入了一种新的算法来寻找最相关的应力,而不需要阈值。以太阳事件元数据为例,测试了无阈值算法的相关性和性能,并将结果与之前的STES挖掘算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatiotemporal event sequence discovery without thresholds.

Spatiotemporal event sequences (STESs) are the ordered series of event types whose instances frequently follow each other in time and are located close-by. An STES is a spatiotemporal frequent pattern type, which is discovered from moving region objects whose polygon-based locations continiously evolve over time. Previous studies on STES mining require significance and prevalence thresholds for the discovery, which is usually unknown to domain experts. The quality of the discovered sequences is of great importance to the domain experts who use these algorithms. We introduce a novel algorithm to find the most relevant STESs without threshold values. We tested the relevance and performance of our threshold-free algorithm with a case study on solar event metadata, and compared the results with the previous STES mining algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoinformatica
Geoinformatica 地学-计算机:信息系统
CiteScore
5.60
自引率
10.00%
发文量
25
审稿时长
6 months
期刊介绍: GeoInformatica is located at the confluence of two rapidly advancing domains: Computer Science and Geographic Information Science; nowadays, Earth studies use more and more sophisticated computing theory and tools, and computer processing of Earth observations through Geographic Information Systems (GIS) attracts a great deal of attention from governmental, industrial and research worlds. This journal aims to promote the most innovative results coming from the research in the field of computer science applied to geographic information systems. Thus, GeoInformatica provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of the use of computer science for spatial studies.
期刊最新文献
LENS: label sparsity-tolerant adversarial learning on spatial deceptive reviews A case study of spatiotemporal forecasting techniques for weather forecasting CLMTR: a generic framework for contrastive multi-modal trajectory representation learning Periodicity aware spatial-temporal adaptive hypergraph neural network for traffic forecasting ICN: Interactive convolutional network for forecasting travel demand of shared micromobility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1