Jung-Hyun Kim, Roya Rasaei, Sujin Park, Ji-Young Kim, Sunghun Na, Seok-Ho Hong
{"title":"链脲佐菌素诱导的糖尿病小鼠肺部基因表达谱的改变。","authors":"Jung-Hyun Kim, Roya Rasaei, Sujin Park, Ji-Young Kim, Sunghun Na, Seok-Ho Hong","doi":"10.12717/DR.2020.24.3.197","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus is a common heterogeneous metabolic disorder, characterized by deposition of extracellular matrix, oxidative stress, and vascular dysfunction, thereby leading to gradual loss of function in multiple organs. However, little attention has been paid to gene expression changes in the lung under hyperglycemic conditions. In this study, we found that diabetes inuced histological changes in the lung of streptozotocin-induced diabetic mice. Global gene expression profiling revealed a set of genes that are up- and down-regulated in the lung of diabetic mice. Among these, expression of <i>Amigo2, Adrb2</i>, and <i>Zbtb16</i> were confirmed at the transcript level to correlate significantly with hyperglycemia in the lung. We further evaluated the effect of human umbilical cord-derived perivascular stem cells (PVCs) on these gene expression in the lung of diabetic mice. Our results show that administration of PVC-conditioned medium significantly suppressed <i>Amig2, Adrb2</i>, and <i>Zbtb16</i> upregulation in these mice, suggesting that these genes may be useful indicators of lung injury during hyperglycemia. Furthermore, PVCs offer a promising alternative cell therapy for treating diabetic complications via regulation of gene expression.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"24 3","pages":"197-205"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576965/pdf/","citationCount":"1","resultStr":"{\"title\":\"Altered Gene Expression Profiles in the Lungs of Streptozotocin-induced Diabetic Mice.\",\"authors\":\"Jung-Hyun Kim, Roya Rasaei, Sujin Park, Ji-Young Kim, Sunghun Na, Seok-Ho Hong\",\"doi\":\"10.12717/DR.2020.24.3.197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus is a common heterogeneous metabolic disorder, characterized by deposition of extracellular matrix, oxidative stress, and vascular dysfunction, thereby leading to gradual loss of function in multiple organs. However, little attention has been paid to gene expression changes in the lung under hyperglycemic conditions. In this study, we found that diabetes inuced histological changes in the lung of streptozotocin-induced diabetic mice. Global gene expression profiling revealed a set of genes that are up- and down-regulated in the lung of diabetic mice. Among these, expression of <i>Amigo2, Adrb2</i>, and <i>Zbtb16</i> were confirmed at the transcript level to correlate significantly with hyperglycemia in the lung. We further evaluated the effect of human umbilical cord-derived perivascular stem cells (PVCs) on these gene expression in the lung of diabetic mice. Our results show that administration of PVC-conditioned medium significantly suppressed <i>Amig2, Adrb2</i>, and <i>Zbtb16</i> upregulation in these mice, suggesting that these genes may be useful indicators of lung injury during hyperglycemia. Furthermore, PVCs offer a promising alternative cell therapy for treating diabetic complications via regulation of gene expression.</p>\",\"PeriodicalId\":72791,\"journal\":{\"name\":\"Development & reproduction\",\"volume\":\"24 3\",\"pages\":\"197-205\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576965/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development & reproduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12717/DR.2020.24.3.197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development & reproduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12717/DR.2020.24.3.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Altered Gene Expression Profiles in the Lungs of Streptozotocin-induced Diabetic Mice.
Diabetes mellitus is a common heterogeneous metabolic disorder, characterized by deposition of extracellular matrix, oxidative stress, and vascular dysfunction, thereby leading to gradual loss of function in multiple organs. However, little attention has been paid to gene expression changes in the lung under hyperglycemic conditions. In this study, we found that diabetes inuced histological changes in the lung of streptozotocin-induced diabetic mice. Global gene expression profiling revealed a set of genes that are up- and down-regulated in the lung of diabetic mice. Among these, expression of Amigo2, Adrb2, and Zbtb16 were confirmed at the transcript level to correlate significantly with hyperglycemia in the lung. We further evaluated the effect of human umbilical cord-derived perivascular stem cells (PVCs) on these gene expression in the lung of diabetic mice. Our results show that administration of PVC-conditioned medium significantly suppressed Amig2, Adrb2, and Zbtb16 upregulation in these mice, suggesting that these genes may be useful indicators of lung injury during hyperglycemia. Furthermore, PVCs offer a promising alternative cell therapy for treating diabetic complications via regulation of gene expression.