首页 > 最新文献

Development & reproduction最新文献

英文 中文
Autotaxin Expression in the Uterus of Cycling Rats. 循环大鼠子宫中 Autotaxin 的表达
Pub Date : 2024-09-01 Epub Date: 2024-09-30 DOI: 10.12717/DR.2024.28.3.67
Hye-Soo Kim, Sung-Ho Lee

Autotaxin (ATX), also known as ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP 2), is an enzyme with lysophospholipase D activity that converts lysophosphatidylcholine into lysophosphatidic acid (LPA). One of the LPA receptors, LPA3, is positively and negatively regulated by progesterone and estrogen, respectively. Furthermore, ATX expression in the rat uterus could be under the control of estrous cycle. In the present study, we used young normal cycling rats for further assess the uterine ATX expression and localization by reverse transcription PCR (RT-PCR) and immunohistochemistry, respectively. In the RT-PCR study, ATX mRNA level at Metestrus (1.00±0.026 AU) was significantly higher than that at Proestrus (0.42±0.046 AU, p<0.001) and the level at Diestrus (0.75±0.107 AU, p<0.05) was significantly higher than that at Proestrus. Among the luminal epithelial cells, the order of the ATX signal intensities was Metestrus>Diestrus>Proestrus>Estrus. Among the myometrial cells, the order of the signal intensities was Diestrus>Proestrus>Estrus>Metestrus. Among the glandular epithelial cells, the order of the signal intensities was Proestrus>Estrus=Metestrus= Estrus. The present study indicates that expression and localization of uterine ATX may be under the control of sex steroids during the estrous cycle. Further studies on the ATX signaling-sex steroid relationship will be providing better understanding on in normal and pathophysiological state of uterus.

Autotaxin(ATX)又称外切核苷酸焦磷酸酶/磷酸二酯酶家族成员 2(ENPP 2),是一种具有溶血磷脂酶 D 活性的酶,可将溶血磷脂酰胆碱转化为溶血磷脂酸(LPA)。LPA 受体之一 LPA3 分别受黄体酮和雌激素的正向和负向调节。此外,大鼠子宫中 ATX 的表达可能受发情周期的控制。在本研究中,我们使用正常的幼年周期性大鼠,分别通过逆转录 PCR(RT-PCR)和免疫组化进一步评估了子宫 ATX 的表达和定位。在RT-PCR研究中,发情期(1.00±0.026 AU)的ATX mRNA水平明显高于预发情期(0.42±0.046 AU,ppDiestrus>Prostrus>Estrus)。在子宫肌细胞中,信号强度的顺序为发情期>预发情期>发情期>月经期。在腺上皮细胞中,信号强度的顺序为发情期>发情期=月经期=发情期。本研究表明,在发情周期中,子宫ATX的表达和定位可能受性激素的控制。对 ATX 信号与性类固醇关系的进一步研究将有助于更好地了解子宫的正常和病理生理状态。
{"title":"Autotaxin Expression in the Uterus of Cycling Rats.","authors":"Hye-Soo Kim, Sung-Ho Lee","doi":"10.12717/DR.2024.28.3.67","DOIUrl":"https://doi.org/10.12717/DR.2024.28.3.67","url":null,"abstract":"<p><p>Autotaxin (ATX), also known as ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP 2), is an enzyme with lysophospholipase D activity that converts lysophosphatidylcholine into lysophosphatidic acid (LPA). One of the LPA receptors, LPA3, is positively and negatively regulated by progesterone and estrogen, respectively. Furthermore, ATX expression in the rat uterus could be under the control of estrous cycle. In the present study, we used young normal cycling rats for further assess the uterine ATX expression and localization by reverse transcription PCR (RT-PCR) and immunohistochemistry, respectively. In the RT-PCR study, ATX mRNA level at Metestrus (1.00±0.026 AU) was significantly higher than that at Proestrus (0.42±0.046 AU, <i>p</i><0.001) and the level at Diestrus (0.75±0.107 AU, <i>p</i><0.05) was significantly higher than that at Proestrus. Among the luminal epithelial cells, the order of the ATX signal intensities was Metestrus>Diestrus>Proestrus>Estrus. Among the myometrial cells, the order of the signal intensities was Diestrus>Proestrus>Estrus>Metestrus. Among the glandular epithelial cells, the order of the signal intensities was Proestrus>Estrus=Metestrus= Estrus. The present study indicates that expression and localization of uterine ATX may be under the control of sex steroids during the estrous cycle. Further studies on the ATX signaling-sex steroid relationship will be providing better understanding on in normal and pathophysiological state of uterus.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 3","pages":"67-74"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495881/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of Morphological Changes in Fins according to Larval Growth of Red Spotted Grouper, Epinephelus akaara. 红点石斑鱼鳍条形态变化的特征与幼鱼生长有关
Pub Date : 2024-09-01 Epub Date: 2024-09-30 DOI: 10.12717/DR.2024.28.3.95
Hee-Kyung Jung, Chi-Hoon Lee, Young-Don Lee

This study investigated the fin development and morphological characteristics according to larval growth in order to obtain information on behavioral characteristics and optimal stocking density during red seed grouper seed production. To examine the growth and fin development process of the larvae, we randomly sampled at 1, 3, 5, 7, 9, 10, 11, 13, 15, 17, 19, 20, 25, 30, 39, 45, 51, and 72 days after hatching. External morphology was observed and measured using an optical microscope. To observe skeletal development, larvae at 13, 20, 30, and 72 days after hatching were fixed in formalin and stained for cartilage and bone examination. At 9-10 DAH, red spotted grouper larvae (2.74±0.1 to 3.0±0.2 mm TL) exhibited a second dorsal fin spine and pelvic fin spine, which subsequently elongated. At 19-20 DAH, the larvae (5.7±0.1 to 6.1±0.1 mm TL) have the lengths of the second dorsal fin spine and pelvic fin spine average 34% and 31% to total length, respectively. From 30 to 72 DAH (12.6±0.4 to 56.0±0.2 mm TL), the length of the second dorsal fin spine and pelvic fin spine to total length decreased from 27% to 8% for the dorsal fin and 21% to 14% for the pelvic fin, respectively. At 30 DAH (12.6±0.4 mm TL), the larvae reached the complete count of fin rays in each fin. At 39 DAH (20.28±3.07 mm TL), the larvae had fin shapes similar to those of adults. At 13-30 DAH (4.2±0.1 to 12.6±0.9 mm TL), barbs and spinules were distributed along the ridges of the second dorsal and pelvic fin spines. However, at 72 DAH, these barbs and spinules were no longer observed on the fins. During the seed production process, red spotted grouper larvae tend to cluster in the morning, and during this time, entanglement of barbs and spinules on the second dorsal and pelvic fin spines can lead to mortality. Therefore, it is considered essential to focus on managing the behavioral patterns and appropriate rearing density of red spotted grouper larvae from the emergence of barbs and spinules on the second dorsal and pelvic fin spines until they regress and metamorphosis is completed.

本研究调查了幼体生长过程中鳍的发育和形态特征,以获得红籽石斑鱼苗种生产过程中行为特征和最佳放养密度的信息。为了研究幼体的生长和鳍的发育过程,我们在孵化后 1、3、5、7、9、10、11、13、15、17、19、20、25、30、39、45、51 和 72 天随机取样。使用光学显微镜观察和测量外部形态。为观察骨骼发育情况,将孵化后 13、20、30 和 72 天的幼虫固定在福尔马林中,进行软骨和骨骼染色检查。在9-10 DAH时,红点石斑鱼幼体(2.74±0.1至3.0±0.2 mm TL)表现出第二背鳍棘和盆鳍棘,随后它们逐渐伸长。在 19-20 DAH,幼体(5.7±0.1 至 6.1±0.1 mm TL)的第二背鳍棘和骨盆鳍棘的长度分别占总长度的 34% 和 31%。从 30 DAH 至 72 DAH(12.6±0.4 至 56.0±0.2 mm TL),背鳍第二背鳍棘和盆鳍棘的长度占总长度的比例分别从 27% 降至 8% 和 21% 降至 14%。在 30 DAH(12.6±0.4 mm TL)时,幼体各鳍的鳍条数达到完整。在 39 DAH(20.28±3.07 mm TL)时,幼体的鳍条形状与成体相似。在 13-30 DAH(4.2±0.1 至 12.6±0.9 mm TL)时,背鳍和腹鳍第二棘的脊上分布着倒钩和棘刺。然而,在 72 DAH 时,鳍上不再观察到这些倒钩和棘刺。在苗种生产过程中,红点石斑鱼幼体往往在早晨聚集,在此期间,第二背鳍和腹鳍棘上的倒钩和棘刺可能会导致幼体死亡。因此,从红斑石斑鱼幼体的第二背鳍和骨盆鳍棘上出现倒钩和棘刺开始,到其退行和变态完成为止,必须重点管理红斑石斑鱼幼体的行为模式和适当的饲养密度。
{"title":"Characteristics of Morphological Changes in Fins according to Larval Growth of Red Spotted Grouper, <i>Epinephelus akaara</i>.","authors":"Hee-Kyung Jung, Chi-Hoon Lee, Young-Don Lee","doi":"10.12717/DR.2024.28.3.95","DOIUrl":"https://doi.org/10.12717/DR.2024.28.3.95","url":null,"abstract":"<p><p>This study investigated the fin development and morphological characteristics according to larval growth in order to obtain information on behavioral characteristics and optimal stocking density during red seed grouper seed production. To examine the growth and fin development process of the larvae, we randomly sampled at 1, 3, 5, 7, 9, 10, 11, 13, 15, 17, 19, 20, 25, 30, 39, 45, 51, and 72 days after hatching. External morphology was observed and measured using an optical microscope. To observe skeletal development, larvae at 13, 20, 30, and 72 days after hatching were fixed in formalin and stained for cartilage and bone examination. At 9-10 DAH, red spotted grouper larvae (2.74±0.1 to 3.0±0.2 mm TL) exhibited a second dorsal fin spine and pelvic fin spine, which subsequently elongated. At 19-20 DAH, the larvae (5.7±0.1 to 6.1±0.1 mm TL) have the lengths of the second dorsal fin spine and pelvic fin spine average 34% and 31% to total length, respectively. From 30 to 72 DAH (12.6±0.4 to 56.0±0.2 mm TL), the length of the second dorsal fin spine and pelvic fin spine to total length decreased from 27% to 8% for the dorsal fin and 21% to 14% for the pelvic fin, respectively. At 30 DAH (12.6±0.4 mm TL), the larvae reached the complete count of fin rays in each fin. At 39 DAH (20.28±3.07 mm TL), the larvae had fin shapes similar to those of adults. At 13-30 DAH (4.2±0.1 to 12.6±0.9 mm TL), barbs and spinules were distributed along the ridges of the second dorsal and pelvic fin spines. However, at 72 DAH, these barbs and spinules were no longer observed on the fins. During the seed production process, red spotted grouper larvae tend to cluster in the morning, and during this time, entanglement of barbs and spinules on the second dorsal and pelvic fin spines can lead to mortality. Therefore, it is considered essential to focus on managing the behavioral patterns and appropriate rearing density of red spotted grouper larvae from the emergence of barbs and spinules on the second dorsal and pelvic fin spines until they regress and metamorphosis is completed.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 3","pages":"95-108"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Salinity and Salmon Pituitary Extract on the Expression of Reproduction and/or Salinity-Related Genes in the Pituitary Cells of Japaneses Eel. 盐度和鲑鱼垂体提取物对日本鳗垂体细胞中生殖和/或盐度相关基因表达的影响
Pub Date : 2024-09-01 Epub Date: 2024-09-30 DOI: 10.12717/DR.2024.28.3.75
Seong Hee Mun, Joon Yeong Kwon

Artificial sexual maturation of eel (Anguilla japonica) involves rearing in seawater and injecting salmon pituitary extract (SPE). The salinity of seawater and components of SPE influence hormonal activities of the eel pituitary, leading to gonad development. This study investigated the direct effects of salinity change and SPE treatment on the eel pituitary gland using primary cell cultures. Pituitary cells were cultured into four experimental groups: control culture (control), SPE-treated culture (SPE), NaCl-treated culture (NaCl) and NaCl+SPE treated culture (NaCl+SPE). We investigated the expression of genes presumably related to reproduction and/or salinity, including luteinizing hormone (LHβ), follicle stimulating hormone (FSHβ), progesterone receptor-like (pgrl), prolactin (PRL), dopamine receptor D4 (drd4), neuropeptide B/W receptor 2 (NPBWR2) and relaxin family peptide receptor 3-2b (rxfp3-2b). Gene expression analysis revealed significant upregulation of LHβ in SPE and NaCl+SPE groups compared to control and NaCl (p<0.05). FSHβ expression did not show any significant changes. PRL showed a significant decrease in the NaCl group (p<0.05). Pgrl, NPBWR2, drd4, and rxfp3-2b displayed the highest expression in the control group, with downregulation observed in all treatment groups (NaCl, SPE, and NaCl+SPE) (p<0.05). This study demonstrated the direct effects of salinity changes and SPE treatment on the eel pituitary. Results from this study also suggest that salinity change is necessary but work together with SPE to induce reproductive process, and that LHβ, pgrl, PRL, drd4, NPBWR2, and rxfp3-2b genes are obviously associated with reproduction and salinity changes in eels.

鳗鱼(日本鳗鲡)的人工性成熟包括在海水中饲养和注射鲑鱼垂体提取物(SPE)。海水的盐度和鲑鱼垂体提取物的成分会影响鳗鱼垂体的激素活动,从而导致性腺发育。本研究利用原代细胞培养物研究了盐度变化和 SPE 处理对鳗鱼垂体的直接影响。垂体细胞分为四个实验组:对照组(control)、SPE处理组(SPE)、NaCl处理组(NaCl)和NaCl+SPE处理组(NaCl+SPE)。我们研究了可能与繁殖和/或盐度有关的基因的表达,包括黄体生成素(LHβ)、促卵泡激素(FSHβ)、类孕酮受体(pgrl)、催乳素(PRL)、多巴胺受体 D4(drd4)、神经肽 B/W 受体 2(NPBWR2)和松弛素家族肽受体 3-2b(rxfp3-2b)。基因表达分析表明,与对照组和 NaCl 组相比,SPE 组和 NaCl+SPE 组中 LHβ 的表达明显上调(ppPgrl、NPBWR2、drd4 和 rxfp3-2b 在对照组中的表达最高,在所有处理组(NaCl、SPE 和 NaCl+SPE)中均出现下调)(pLHβ、pgrl、PRL、drd4、NPBWR2 和 rxfp3-2b 基因明显与黄鳝的繁殖和盐度变化有关。
{"title":"Effect of Salinity and Salmon Pituitary Extract on the Expression of Reproduction and/or Salinity-Related Genes in the Pituitary Cells of Japaneses Eel.","authors":"Seong Hee Mun, Joon Yeong Kwon","doi":"10.12717/DR.2024.28.3.75","DOIUrl":"https://doi.org/10.12717/DR.2024.28.3.75","url":null,"abstract":"<p><p>Artificial sexual maturation of eel (<i>Anguilla japonica</i>) involves rearing in seawater and injecting salmon pituitary extract (SPE). The salinity of seawater and components of SPE influence hormonal activities of the eel pituitary, leading to gonad development. This study investigated the direct effects of salinity change and SPE treatment on the eel pituitary gland using primary cell cultures. Pituitary cells were cultured into four experimental groups: control culture (control), SPE-treated culture (SPE), NaCl-treated culture (NaCl) and NaCl+SPE treated culture (NaCl+SPE). We investigated the expression of genes presumably related to reproduction and/or salinity, including luteinizing hormone (<i>LHβ</i>), follicle stimulating hormone (<i>FSHβ</i>), progesterone receptor-like (<i>pgrl</i>), prolactin (<i>PRL</i>), dopamine receptor D4 (<i>drd4</i>), neuropeptide B/W receptor 2 (<i>NPBWR2</i>) and relaxin family peptide receptor 3-2b (<i>rxfp3-2b</i>). Gene expression analysis revealed significant upregulation of LHβ in SPE and NaCl+SPE groups compared to control and NaCl (<i>p</i><0.05). FSHβ expression did not show any significant changes. PRL showed a significant decrease in the NaCl group (<i>p</i><0.05). <i>Pgrl, NPBWR2, drd4</i>, and <i>rxfp3-2b</i> displayed the highest expression in the control group, with downregulation observed in all treatment groups (NaCl, SPE, and NaCl+SPE) (<i>p</i><0.05). This study demonstrated the direct effects of salinity changes and SPE treatment on the eel pituitary. Results from this study also suggest that salinity change is necessary but work together with SPE to induce reproductive process, and that <i>LHβ, pgrl, PRL, drd4, NPBWR2</i>, and <i>rxfp3-2b</i> genes are obviously associated with reproduction and salinity changes in eels.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 3","pages":"75-86"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Banana Peel Extracts Enhance Climbing Ability and Extend Lifespan in Drosophila melanogaster. 香蕉皮提取物能增强黑腹果蝇的攀爬能力并延长其寿命
Pub Date : 2024-09-01 Epub Date: 2024-09-30 DOI: 10.12717/DR.2024.28.3.87
Hyejin Seo, Jong-Won Yoon, Younghwi Kwon, Eunbyul Yeom

Banana peels, often discarded as waste, represent one of the most abundant food by-products, highlighting the need for effective waste management and resource recycling strategies. Due to their rich nutritional content, banana peels have been investigated for various health benefits, including anti-obesity effects. In this study, we examined the potential anti-aging properties of banana peel extracts (BPEs) in Drosophila melanogaster. Our findings demonstrated that flies fed with BPEs exhibited an extended lifespan and a significant improvement in age-related decline in climbing ability. Additionally, Dilp2 mRNA expression level is markedly decreased in aged flies fed with BPEs. These results suggest that BPEs may serve as a potential anti-aging agent by enhancing locomotor function and extending lifespan, potentially through the modulation of insulin signaling in D. melanogaster.

香蕉皮经常被当作废物丢弃,是最丰富的食品副产品之一,因此需要采取有效的废物管理和资源回收战略。由于香蕉皮含有丰富的营养成分,人们一直在研究其对健康的各种益处,包括抗肥胖作用。在这项研究中,我们研究了香蕉皮提取物(BPEs)在黑腹果蝇体内的潜在抗衰老特性。我们的研究结果表明,用香蕉皮提取物喂养的果蝇寿命延长,与年龄相关的攀爬能力下降情况也有明显改善。此外,用 BPEs 喂养的老龄果蝇的 Dilp2 mRNA 表达水平明显下降。这些结果表明,BPE可能通过调节黑腹蝇体内的胰岛素信号,增强其运动功能并延长其寿命,从而成为一种潜在的抗衰老药物。
{"title":"Banana Peel Extracts Enhance Climbing Ability and Extend Lifespan in <i>Drosophila melanogaster</i>.","authors":"Hyejin Seo, Jong-Won Yoon, Younghwi Kwon, Eunbyul Yeom","doi":"10.12717/DR.2024.28.3.87","DOIUrl":"https://doi.org/10.12717/DR.2024.28.3.87","url":null,"abstract":"<p><p>Banana peels, often discarded as waste, represent one of the most abundant food by-products, highlighting the need for effective waste management and resource recycling strategies. Due to their rich nutritional content, banana peels have been investigated for various health benefits, including anti-obesity effects. In this study, we examined the potential anti-aging properties of banana peel extracts (BPEs) in <i>Drosophila melanogaster</i>. Our findings demonstrated that flies fed with BPEs exhibited an extended lifespan and a significant improvement in age-related decline in climbing ability. Additionally, <i>Dilp2</i> mRNA expression level is markedly decreased in aged flies fed with BPEs. These results suggest that BPEs may serve as a potential anti-aging agent by enhancing locomotor function and extending lifespan, potentially through the modulation of insulin signaling in <i>D. melanogaster</i>.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 3","pages":"87-94"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Actin Depolymerizing Factor Destrin Regulates Cilia Development and Function during Vertebrate Embryogenesis. 肌动蛋白解聚因子Destrin在脊椎动物胚胎发生过程中调控纤毛的发育和功能
Pub Date : 2024-09-01 Epub Date: 2024-09-30 DOI: 10.12717/DR.2024.28.3.109
Youni Kim, Hyun-Kyung Lee, Kyeong-Yeon Park, Tayaba Ismail, Hongchan Lee, Hyun-Shik Lee

The actin cytoskeleton plays fundamental roles in ciliogenesis and the actin depolymerizing factor destrin regulates actin dynamics by treadmilling actin filaments and increasing globular actin pools. However, the specific developmental roles of destrin in ciliogenesis have not been fully elucidated. Here, we investigated the function of destrin in ciliogenesis using Xenopus laevis and human retinal pigmented epithelial (hRPE1) cells. We discovered the loss of destrin increased the number of multiciliated cells in the Xenopus epithelium and impeded cilia motility. Additionally, destrin depletion remarkably reduced the length of primary cilia in the Xenopus neural tube and hRPE1 cells by affecting actin dynamics. Immunofluorescence using markers of ciliary components indicated that destrin controls the directionality and polarity of basal bodies and axonemal elongation by modulating actin dynamics, independent of basal body docking. In conclusion, destrin plays a significant role during vertebrate ciliogenesis regulating both primary and multicilia development. Our data suggest new insights for understanding the roles of actin dynamics in cilia development.

肌动蛋白细胞骨架在纤毛发生过程中发挥着重要作用,肌动蛋白解聚因子去蛋白通过踩踏肌动蛋白丝和增加球状肌动蛋白池来调节肌动蛋白动力学。然而,去蛋白在纤毛发生中的具体发育作用尚未完全阐明。在这里,我们利用爪蟾和人类视网膜色素上皮细胞(hRPE1)研究了去甲肾上腺素在纤毛生成过程中的功能。我们发现,去甲肾上腺素的缺失增加了爪蟾上皮细胞中多纤毛细胞的数量,并阻碍了纤毛的运动。此外,通过影响肌动蛋白的动力学,去甲肾上腺素的缺失明显减少了爪蟾神经管和hRPE1细胞中初级纤毛的长度。使用纤毛成分标记物进行的免疫荧光表明,去甲肾上腺素通过调节肌动蛋白的动态来控制基底体的方向性和极性以及轴突的伸长,而与基底体的对接无关。总之,去甲肾上腺素在脊椎动物纤毛发生过程中发挥着重要作用,调控着初级纤毛和多纤毛的发育。我们的数据为理解肌动蛋白动力学在纤毛发育中的作用提供了新的视角。
{"title":"Actin Depolymerizing Factor Destrin Regulates Cilia Development and Function during Vertebrate Embryogenesis.","authors":"Youni Kim, Hyun-Kyung Lee, Kyeong-Yeon Park, Tayaba Ismail, Hongchan Lee, Hyun-Shik Lee","doi":"10.12717/DR.2024.28.3.109","DOIUrl":"https://doi.org/10.12717/DR.2024.28.3.109","url":null,"abstract":"<p><p>The actin cytoskeleton plays fundamental roles in ciliogenesis and the actin depolymerizing factor destrin regulates actin dynamics by treadmilling actin filaments and increasing globular actin pools. However, the specific developmental roles of destrin in ciliogenesis have not been fully elucidated. Here, we investigated the function of destrin in ciliogenesis using <i>Xenopus laevis</i> and human retinal pigmented epithelial (hRPE1) cells. We discovered the loss of destrin increased the number of multiciliated cells in the <i>Xenopus</i> epithelium and impeded cilia motility. Additionally, destrin depletion remarkably reduced the length of primary cilia in the <i>Xenopus</i> neural tube and hRPE1 cells by affecting actin dynamics. Immunofluorescence using markers of ciliary components indicated that destrin controls the directionality and polarity of basal bodies and axonemal elongation by modulating actin dynamics, independent of basal body docking. In conclusion, destrin plays a significant role during vertebrate ciliogenesis regulating both primary and multicilia development. Our data suggest new insights for understanding the roles of actin dynamics in cilia development.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 3","pages":"109-119"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495882/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Potential Role of fgf4, fgf24, and fgf17 in Pharyngeal Pouch Formation in Zebrafish. fgf4、fgf24 和 fgf17 在斑马鱼咽囊形成中的潜在作用
Pub Date : 2024-06-01 Epub Date: 2024-06-30 DOI: 10.12717/DR.2024.28.2.55
Sil Jin, Chong Pyo Choe

In vertebrates, Fgf signaling is essential for the development of pharyngeal pouches, which controls facial skeletal development. Genetically, fgf3 and fgf8 are required for pouch formation in mice and zebrafish. However, loss-of-function phenotypes of fgf3 and fgf8 are milder than expected in mice and zebrafish, which suggests that an additional fgf gene(s) would be involved in pouch formation. Here, we analyzed the expression, regulation, and function of three fgfs, fgf4, fgf24, and fgf17, during pouch development in zebrafish. We find that they are expressed in the distinct regions of pharyngeal endoderm in pouch formation, with fgf4 and fgf17 also being expressed in the adjacent mesoderm, in addition to previously reported endodermal fgf3 and mesodermal fgf8 expression. The endodermal expression of fgf4, fgf24, and fgf17 and the mesodermal expression of fgf4 and fgf17 are positively regulated by Tbx1 but not by Fgf3, in pouch formation. Fgf8 is required to express the endodermal expression of fgf4 and fgf24. Interestingly, however, single mutant, all double mutant combinations, and triple mutant for fgf4, fgf24, and fgf17 do not show any defects in pouches and facial skeletons. Considering a high degree of genetic redundancy in the Fgf signaling components in craniofacial development in zebrafish, our result suggests that fgf4, fgf24, and fgf17 have a potential role for pouch formation, with a redundancy with other fgf gene(s).

在脊椎动物中,Fgf 信号对于咽囊的发育至关重要,咽囊的发育控制着面部骨骼的发育。在基因上,小鼠和斑马鱼的咽袋形成需要 fgf3 和 fgf8。然而,在小鼠和斑马鱼中,fgf3和fgf8的功能缺失表型比预期的要轻,这表明咽袋的形成还需要一个或多个fgf基因。在这里,我们分析了斑马鱼眼袋发育过程中三个fff基因(fff4、fff24和fff17)的表达、调控和功能。我们发现,在咽袋形成过程中,它们在咽内胚层的不同区域表达,除了先前报道的内胚层 fgf3 和中胚层 fgf8 表达外,fgf4 和 fgf17 也在邻近的中胚层表达。在小袋形成过程中,内胚层 fgf4、fgf24 和 fgf17 的表达以及中胚层 fgf4 和 fgf17 的表达受 Tbx1 的正向调节,但不受 Fgf3 的调节。Fgf8 是表达 fgf4 和 fgf24 的内胚层表达所必需的。但有趣的是,fgf4、fgf24和fgf17的单突变体、所有双突变体组合和三突变体都没有显示出任何小袋和面部骨骼的缺陷。考虑到斑马鱼颅面发育过程中 Fgf 信号元件的高度遗传冗余,我们的结果表明,fff4、fff24 和 fgf17 与其他 fgf 基因有冗余,可能在小袋形成过程中发挥作用。
{"title":"A Potential Role of <i>fgf4</i>, <i>fgf24</i>, and <i>fgf17</i> in Pharyngeal Pouch Formation in Zebrafish.","authors":"Sil Jin, Chong Pyo Choe","doi":"10.12717/DR.2024.28.2.55","DOIUrl":"10.12717/DR.2024.28.2.55","url":null,"abstract":"<p><p>In vertebrates, Fgf signaling is essential for the development of pharyngeal pouches, which controls facial skeletal development. Genetically, <i>fgf3</i> and <i>fgf8</i> are required for pouch formation in mice and zebrafish. However, loss-of-function phenotypes of <i>fgf3</i> and <i>fgf8</i> are milder than expected in mice and zebrafish, which suggests that an additional <i>fgf</i> gene(s) would be involved in pouch formation. Here, we analyzed the expression, regulation, and function of three <i>fgfs</i>, <i>fgf4</i>, <i>fgf24</i>, and <i>fgf17</i>, during pouch development in zebrafish. We find that they are expressed in the distinct regions of pharyngeal endoderm in pouch formation, with <i>fgf4</i> and <i>fgf17</i> also being expressed in the adjacent mesoderm, in addition to previously reported endodermal <i>fgf3</i> and mesodermal <i>fgf8</i> expression. The endodermal expression of <i>fgf4</i>, <i>fgf24</i>, and <i>fgf17</i> and the mesodermal expression of <i>fgf4</i> and <i>fgf17</i> are positively regulated by Tbx1 but not by Fgf3, in pouch formation. Fgf8 is required to express the endodermal expression of <i>fgf4</i> and <i>fgf24</i>. Interestingly, however, single mutant, all double mutant combinations, and triple mutant for <i>fgf4</i>, <i>fgf24</i>, and <i>fgf17</i> do not show any defects in pouches and facial skeletons. Considering a high degree of genetic redundancy in the Fgf signaling components in craniofacial development in zebrafish, our result suggests that <i>fgf4</i>, <i>fgf24</i>, and <i>fgf17</i> have a potential role for pouch formation, with a redundancy with other <i>fgf</i> gene(s).</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 2","pages":"55-65"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yeast Small Ubiquitin-Like Modifier (SUMO) Protease Ulp2 is Involved in RNA Splicing. 酵母小类泛素修饰蛋白(SUMO)蛋白酶 Ulp2 参与了 RNA 剪接。
Pub Date : 2024-06-01 Epub Date: 2024-06-30 DOI: 10.12717/DR.2024.28.2.47
Jeong-Min Park, Seungji Choi, Dong Kyu Choi, Hyun-Shik Lee, Dong-Hyung Cho, Jungmin Choi, Hong-Yeoul Ryu

In eukaryotes, RNA splicing, an essential biological process, is crucial for precise gene expression. Inaccurate RNA splicing can cause aberrant mRNA production, disrupting protein synthesis. To regulate splicing efficiency, some splicing factors are reported to undergo Ubiquitin-like Modifier (SUMO)ylation. Our data indicate that in Saccharomyces cerevisiae, the SUMO protease, Ulp2, is involved in splicing. In the ulp2Δ mutant, some ribosomal protein (RP) transcripts exhibited a significant increase in the levels of intron-containing pre-mRNA because of improper splicing. Moreover, we confirmed Ulp2 protein binding to the intronic regions of RP genes. These findings highlight a critical Ulp2 role in RP transcript splicing.

在真核生物中,RNA 剪接是一个重要的生物过程,对基因的精确表达至关重要。不准确的 RNA 剪接会导致 mRNA 生成异常,从而破坏蛋白质合成。据报道,为了调节剪接效率,一些剪接因子会发生类泛素修饰(SUMO)。我们的数据表明,在酿酒酵母中,SUMO蛋白酶Ulp2参与了剪接。在ulp2Δ突变体中,由于剪接不当,一些核糖体蛋白(RP)转录本中含有内含子的前mRNA水平显著增加。此外,我们还证实了 Ulp2 蛋白与 RP 基因内含子区的结合。这些发现凸显了Ulp2在RP转录本剪接中的关键作用。
{"title":"Yeast Small Ubiquitin-Like Modifier (SUMO) Protease Ulp2 is Involved in RNA Splicing.","authors":"Jeong-Min Park, Seungji Choi, Dong Kyu Choi, Hyun-Shik Lee, Dong-Hyung Cho, Jungmin Choi, Hong-Yeoul Ryu","doi":"10.12717/DR.2024.28.2.47","DOIUrl":"10.12717/DR.2024.28.2.47","url":null,"abstract":"<p><p>In eukaryotes, RNA splicing, an essential biological process, is crucial for precise gene expression. Inaccurate RNA splicing can cause aberrant mRNA production, disrupting protein synthesis. To regulate splicing efficiency, some splicing factors are reported to undergo Ubiquitin-like Modifier (SUMO)ylation. Our data indicate that in <i>Saccharomyces cerevisiae</i>, the SUMO protease, Ulp2, is involved in splicing. In the <i>ulp2Δ</i> mutant, some ribosomal protein (RP) transcripts exhibited a significant increase in the levels of intron-containing pre-mRNA because of improper splicing. Moreover, we confirmed Ulp2 protein binding to the intronic regions of RP genes. These findings highlight a critical Ulp2 role in RP transcript splicing.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 2","pages":"47-54"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268891/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology of Cellular Prion Proteins in Reproduction. 细胞朊病毒蛋白在生殖过程中的生理学作用。
Pub Date : 2024-06-01 Epub Date: 2024-06-30 DOI: 10.12717/DR.2024.28.2.29
Željko M Svedružić, Chongsuk Ryou, Donchan Choi, Sung-Ho Lee, Yong-Pil Cheon

Cellular prion protein (PrPC) encoded at Prnp gene is well-known to form a misfolded isoform, termed scrapie PrP (PrPSC) that cause transmissible degenerative diseases in central nervous system. The physiological role of PrPC has been proposed by many studies, showing that PrPC interacts with various intracellular, membrane, and extracellular molecules including mitochondrial inner membrane as a scaffold. PrPC is expressed in most cell types including reproductive organs. Numerous studies using PrPC knockout rodent models found no obvious phenotypic changes, in particular the clear phenotypes in development and reproduction have not demonstrated in these knockout models. However, various roles of PrPC have been evaluated at the cellular levels. In this review, we summarized the known roles of PrPC in various cell types and tissues with a special emphasis on those involved in reproduction.

众所周知,Prnp 基因编码的细胞朊病毒蛋白(PrPC)会形成一种错误折叠的异构体,即刮伤病朊病毒蛋白(PrPSC),导致中枢神经系统的传染性变性疾病。许多研究提出了 PrPC 的生理作用,表明 PrPC 与各种细胞内、膜和细胞外分子相互作用,包括作为支架的线粒体内膜。PrPC 在包括生殖器官在内的大多数细胞类型中都有表达。使用 PrPC 基因敲除啮齿动物模型进行的大量研究发现,这些基因敲除模型没有明显的表型变化,特别是在发育和生殖方面没有表现出明显的表型。不过,PrPC 在细胞水平上的各种作用已得到评估。在本综述中,我们总结了 PrPC 在各种细胞类型和组织中的已知作用,并特别强调了与生殖有关的作用。
{"title":"Physiology of Cellular Prion Proteins in Reproduction.","authors":"Željko M Svedružić, Chongsuk Ryou, Donchan Choi, Sung-Ho Lee, Yong-Pil Cheon","doi":"10.12717/DR.2024.28.2.29","DOIUrl":"10.12717/DR.2024.28.2.29","url":null,"abstract":"<p><p>Cellular prion protein (PrP<sup>C</sup>) encoded at <i>Prnp</i> gene is well-known to form a misfolded isoform, termed scrapie PrP (PrP<sup>SC</sup>) that cause transmissible degenerative diseases in central nervous system. The physiological role of PrP<sup>C</sup> has been proposed by many studies, showing that PrP<sup>C</sup> interacts with various intracellular, membrane, and extracellular molecules including mitochondrial inner membrane as a scaffold. PrP<sup>C</sup> is expressed in most cell types including reproductive organs. Numerous studies using PrP<sup>C</sup> knockout rodent models found no obvious phenotypic changes, in particular the clear phenotypes in development and reproduction have not demonstrated in these knockout models. However, various roles of PrP<sup>C</sup> have been evaluated at the cellular levels. In this review, we summarized the known roles of PrP<sup>C</sup> in various cell types and tissues with a special emphasis on those involved in reproduction.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 2","pages":"29-36"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of Hypermethylated Homeobox A11 (HOXA11) Inhibits Tumor Cell Growth and Induces Apoptosis in Cervical Cancer. 宫颈癌中过表达的高甲基化Homeobox A11(HOXA11)可抑制肿瘤细胞生长并诱导其凋亡
Pub Date : 2024-06-01 Epub Date: 2024-06-30 DOI: 10.12717/DR.2024.28.2.37
Seung-Yul Lee, Tae Jeong Oh, Sungwhan An, Seung-Hoon Lee

This study aimed to elucidate the potential of Homeobox A11 (HOXA11) as a therapeutic target and a diagnostic methylation marker for cervical cancer. Gene expression analysis using cDNA microarray in cervical cancer cell lines revealed significantly reduced expression of the HOXA11 gene. Subsequent investigation of HOXA11 promoter methylation in samples from normal individuals and invasive cervical cancer patients showed over 53.2% higher methylation in cancer scrapes compared to normal scrapes. Furthermore, overexpression of HOXA11, which is downregulated in cervical cancer, strongly suppressed cell growth in cervical cancer cell lines, HeLa and HT3. Additionally, we performed transferase dUTP nick end labeling assay and confirmed that the inhibition of cervical cancer cell proliferation occurred via apoptosis. Mechanistically, overexpression of HOXA11 led to mitochondrial apoptosis characterized by PARP cleavage due to increased c-Myc and enhanced cytochrome C secretion into the cytoplasm. These findings suggest that HOXA11 could potentially serve as a methylation marker for diagnosing cervical cancer and as a novel therapeutic target for its treatment.

本研究旨在阐明Homeobox A11(HOXA11)作为宫颈癌治疗靶点和诊断甲基化标记物的潜力。利用 cDNA 微阵列对宫颈癌细胞系进行基因表达分析,发现 HOXA11 基因的表达明显降低。随后对正常人和浸润性宫颈癌患者样本中的 HOXA11 启动子甲基化进行了调查,结果显示,与正常人的刮痕相比,癌症刮痕的甲基化程度要高出 53.2%。此外,在宫颈癌中下调的 HOXA11 的过表达能强烈抑制宫颈癌细胞株 HeLa 和 HT3 的细胞生长。此外,我们还进行了转移酶 dUTP 缺口标记实验,证实了宫颈癌细胞增殖抑制是通过细胞凋亡实现的。从机理上讲,HOXA11的过表达会导致线粒体凋亡,其特点是c-Myc增加导致PARP裂解,细胞色素C分泌到细胞质中的能力增强。这些研究结果表明,HOXA11 有可能成为诊断宫颈癌的甲基化标记物和治疗宫颈癌的新靶点。
{"title":"Overexpression of Hypermethylated Homeobox A11 (HOXA11) Inhibits Tumor Cell Growth and Induces Apoptosis in Cervical Cancer.","authors":"Seung-Yul Lee, Tae Jeong Oh, Sungwhan An, Seung-Hoon Lee","doi":"10.12717/DR.2024.28.2.37","DOIUrl":"10.12717/DR.2024.28.2.37","url":null,"abstract":"<p><p>This study aimed to elucidate the potential of Homeobox A11 (HOXA11) as a therapeutic target and a diagnostic methylation marker for cervical cancer. Gene expression analysis using cDNA microarray in cervical cancer cell lines revealed significantly reduced expression of the HOXA11 gene. Subsequent investigation of HOXA11 promoter methylation in samples from normal individuals and invasive cervical cancer patients showed over 53.2% higher methylation in cancer scrapes compared to normal scrapes. Furthermore, overexpression of HOXA11, which is downregulated in cervical cancer, strongly suppressed cell growth in cervical cancer cell lines, HeLa and HT3. Additionally, we performed transferase dUTP nick end labeling assay and confirmed that the inhibition of cervical cancer cell proliferation occurred via apoptosis. Mechanistically, overexpression of HOXA11 led to mitochondrial apoptosis characterized by PARP cleavage due to increased c-Myc and enhanced cytochrome C secretion into the cytoplasm. These findings suggest that HOXA11 could potentially serve as a methylation marker for diagnosing cervical cancer and as a novel therapeutic target for its treatment.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 2","pages":"37-45"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gonadotropins Regulate the mRNA Expression of Gonadotropin-Releasing Hormone and Its Receptors in the Mouse Ovary and Uterus. 促性腺激素调节小鼠卵巢和子宫中促性腺激素释放激素及其受体的 mRNA 表达
Pub Date : 2024-03-01 Epub Date: 2024-03-31 DOI: 10.12717/DR.2024.28.1.1
Soeun Moon, Bokyeong Yun, Minju Lee, Eunji Seok, Jinah Ha, Hyunwon Yang
{"title":"Gonadotropins Regulate the mRNA Expression of Gonadotropin-Releasing Hormone and Its Receptors in the Mouse Ovary and Uterus.","authors":"Soeun Moon, Bokyeong Yun, Minju Lee, Eunji Seok, Jinah Ha, Hyunwon Yang","doi":"10.12717/DR.2024.28.1.1","DOIUrl":"https://doi.org/10.12717/DR.2024.28.1.1","url":null,"abstract":"","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140860769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Development & reproduction
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1