多形性胶质母细胞瘤的药物靶点排序。

Radhika Saraf, Shaghayegh Agah, Aniruddha Datta, Xiaoqian Jiang
{"title":"多形性胶质母细胞瘤的药物靶点排序。","authors":"Radhika Saraf,&nbsp;Shaghayegh Agah,&nbsp;Aniruddha Datta,&nbsp;Xiaoqian Jiang","doi":"10.1186/s42490-021-00052-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma Multiforme, an aggressive primary brain tumor, has a poor prognosis and no effective standard of care treatments. Most patients undergoing radiotherapy, along with Temozolomide chemotherapy, develop resistance to the drug, and recurrence of the tumor is a common issue after the treatment. We propose to model the pathways active in Glioblastoma using Boolean network techniques. The network captures the genetic interactions and possible mutations that are involved in the development of the brain tumor. The model is used to predict the theoretical efficacies of drugs for the treatment of cancer.</p><p><strong>Results: </strong>We use the Boolean network to rank the critical intervention points in the pathway to predict an effective therapeutic strategy for Glioblastoma. Drug repurposing helps to identify non-cancer drugs that could be effective in cancer treatment. We predict the effectiveness of drug combinations of anti-cancer and non-cancer drugs for Glioblastoma.</p><p><strong>Conclusions: </strong>Given the genetic profile of a GBM tumor, the Boolean model can predict the most effective targets for treatment. We also identified two-drug combinations that could be more effective in killing GBM cells than conventional chemotherapeutic agents. The non-cancer drug Aspirin could potentially increase the cytotoxicity of TMZ in GBM patients.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"3 1","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-021-00052-w","citationCount":"5","resultStr":"{\"title\":\"Drug target ranking for glioblastoma multiforme.\",\"authors\":\"Radhika Saraf,&nbsp;Shaghayegh Agah,&nbsp;Aniruddha Datta,&nbsp;Xiaoqian Jiang\",\"doi\":\"10.1186/s42490-021-00052-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Glioblastoma Multiforme, an aggressive primary brain tumor, has a poor prognosis and no effective standard of care treatments. Most patients undergoing radiotherapy, along with Temozolomide chemotherapy, develop resistance to the drug, and recurrence of the tumor is a common issue after the treatment. We propose to model the pathways active in Glioblastoma using Boolean network techniques. The network captures the genetic interactions and possible mutations that are involved in the development of the brain tumor. The model is used to predict the theoretical efficacies of drugs for the treatment of cancer.</p><p><strong>Results: </strong>We use the Boolean network to rank the critical intervention points in the pathway to predict an effective therapeutic strategy for Glioblastoma. Drug repurposing helps to identify non-cancer drugs that could be effective in cancer treatment. We predict the effectiveness of drug combinations of anti-cancer and non-cancer drugs for Glioblastoma.</p><p><strong>Conclusions: </strong>Given the genetic profile of a GBM tumor, the Boolean model can predict the most effective targets for treatment. We also identified two-drug combinations that could be more effective in killing GBM cells than conventional chemotherapeutic agents. The non-cancer drug Aspirin could potentially increase the cytotoxicity of TMZ in GBM patients.</p>\",\"PeriodicalId\":72425,\"journal\":{\"name\":\"BMC biomedical engineering\",\"volume\":\"3 1\",\"pages\":\"7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s42490-021-00052-w\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42490-021-00052-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42490-021-00052-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

背景:多形性胶质母细胞瘤是一种侵袭性的原发性脑肿瘤,预后差,缺乏有效的标准治疗。大多数接受放疗和替莫唑胺化疗的患者对药物产生耐药性,治疗后肿瘤复发是一个常见问题。我们建议使用布尔网络技术来模拟胶质母细胞瘤中活跃的通路。该网络捕获了与脑肿瘤发展有关的基因相互作用和可能的突变。该模型用于预测治疗癌症的药物的理论疗效。结果:我们使用布尔网络对通路中的关键干预点进行排序,以预测胶质母细胞瘤的有效治疗策略。药物再利用有助于确定非癌症药物在癌症治疗中可能有效。我们预测了抗癌药物和非癌症药物联合治疗胶质母细胞瘤的有效性。结论:考虑到GBM肿瘤的遗传特征,布尔模型可以预测最有效的治疗靶点。我们还发现两种药物联合使用可能比传统化疗药物更有效地杀死GBM细胞。非癌症药物阿司匹林可能会增加GBM患者TMZ的细胞毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Drug target ranking for glioblastoma multiforme.

Background: Glioblastoma Multiforme, an aggressive primary brain tumor, has a poor prognosis and no effective standard of care treatments. Most patients undergoing radiotherapy, along with Temozolomide chemotherapy, develop resistance to the drug, and recurrence of the tumor is a common issue after the treatment. We propose to model the pathways active in Glioblastoma using Boolean network techniques. The network captures the genetic interactions and possible mutations that are involved in the development of the brain tumor. The model is used to predict the theoretical efficacies of drugs for the treatment of cancer.

Results: We use the Boolean network to rank the critical intervention points in the pathway to predict an effective therapeutic strategy for Glioblastoma. Drug repurposing helps to identify non-cancer drugs that could be effective in cancer treatment. We predict the effectiveness of drug combinations of anti-cancer and non-cancer drugs for Glioblastoma.

Conclusions: Given the genetic profile of a GBM tumor, the Boolean model can predict the most effective targets for treatment. We also identified two-drug combinations that could be more effective in killing GBM cells than conventional chemotherapeutic agents. The non-cancer drug Aspirin could potentially increase the cytotoxicity of TMZ in GBM patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
A performance evaluation of commercially available and 3D-printable prosthetic hands: a comparison using the anthropomorphic hand assessment protocol. Comparing scissors and scalpels to a novel surgical instrument: a biomechanical sectioning study. The neurophysiology of sensorimotor prosthetic control. Multi-parameter viscoelastic material model for denture adhesives based on time-temperature superposition and multiple linear regression analysis. The effect of using the hip exoskeleton assistive (HEXA) robot compared to conventional physiotherapy on clinical functional outcomes in stroke patients with hemiplegia: a pilot randomized controlled trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1