酵母中的营养传感和 cAMP 信号:G 蛋白偶联受体与 PKA 的受体激活。

IF 4.1 3区 生物学 Q2 CELL BIOLOGY Microbial Cell Pub Date : 2020-10-12 DOI:10.15698/mic2021.01.740
Griet Van Zeebroeck, Liesbeth Demuyser, Zhiqiang Zhang, Ines Cottignie, Johan M Thevelein
{"title":"酵母中的营养传感和 cAMP 信号:G 蛋白偶联受体与 PKA 的受体激活。","authors":"Griet Van Zeebroeck, Liesbeth Demuyser, Zhiqiang Zhang, Ines Cottignie, Johan M Thevelein","doi":"10.15698/mic2021.01.740","DOIUrl":null,"url":null,"abstract":"<p><p>A major signal transduction pathway regulating cell growth and many associated physiological properties as a function of nutrient availability in the yeast <i>Saccharomyces cerevisiae</i> is the protein kinase A (PKA) pathway. Glucose activation of PKA is mediated by G-protein coupled receptor (GPCR) Gpr1, and secondary messenger cAMP. Other nutrients, including nitrogen, phosphate and sulfate, activate PKA in accordingly-starved cells through nutrient transceptors, but apparently without cAMP signaling. We have now used an optimized EPAC-based fluorescence resonance energy transfer (FRET) sensor to precisely monitor <i>in vivo</i> cAMP levels after nutrient addition. We show that GPCR-mediated glucose activation of PKA is correlated with a rapid transient increase in the cAMP level <i>in vivo</i>, whereas nutrient transceptor-mediated activation by nitrogen, phosphate or sulfate, is not associated with any significant increase in cAMP <i>in vivo</i>. We also demonstrate direct physical interaction between the Gap1 amino acid transceptor and the catalytic subunits of PKA, Tpk1, 2 and 3. In addition, we reveal a conserved consensus motif in the nutrient transceptors that is also present in Bcy1, the regulatory subunit of PKA. This suggests that nutrient transceptor activation of PKA may be mediated by direct release of bound PKA catalytic subunits, triggered by the conformational changes occurring during transport of the substrate by the transceptor. Our results support a model in which nutrient transceptors are evolutionary ancestors of GPCRs, employing a more primitive direct signaling mechanism compared to the indirect cAMP second-messenger signaling mechanism used by GPCRs for activation of PKA.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780724/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nutrient sensing and cAMP signaling in yeast: G-protein coupled receptor versus transceptor activation of PKA.\",\"authors\":\"Griet Van Zeebroeck, Liesbeth Demuyser, Zhiqiang Zhang, Ines Cottignie, Johan M Thevelein\",\"doi\":\"10.15698/mic2021.01.740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A major signal transduction pathway regulating cell growth and many associated physiological properties as a function of nutrient availability in the yeast <i>Saccharomyces cerevisiae</i> is the protein kinase A (PKA) pathway. Glucose activation of PKA is mediated by G-protein coupled receptor (GPCR) Gpr1, and secondary messenger cAMP. Other nutrients, including nitrogen, phosphate and sulfate, activate PKA in accordingly-starved cells through nutrient transceptors, but apparently without cAMP signaling. We have now used an optimized EPAC-based fluorescence resonance energy transfer (FRET) sensor to precisely monitor <i>in vivo</i> cAMP levels after nutrient addition. We show that GPCR-mediated glucose activation of PKA is correlated with a rapid transient increase in the cAMP level <i>in vivo</i>, whereas nutrient transceptor-mediated activation by nitrogen, phosphate or sulfate, is not associated with any significant increase in cAMP <i>in vivo</i>. We also demonstrate direct physical interaction between the Gap1 amino acid transceptor and the catalytic subunits of PKA, Tpk1, 2 and 3. In addition, we reveal a conserved consensus motif in the nutrient transceptors that is also present in Bcy1, the regulatory subunit of PKA. This suggests that nutrient transceptor activation of PKA may be mediated by direct release of bound PKA catalytic subunits, triggered by the conformational changes occurring during transport of the substrate by the transceptor. Our results support a model in which nutrient transceptors are evolutionary ancestors of GPCRs, employing a more primitive direct signaling mechanism compared to the indirect cAMP second-messenger signaling mechanism used by GPCRs for activation of PKA.</p>\",\"PeriodicalId\":18397,\"journal\":{\"name\":\"Microbial Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2020-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780724/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15698/mic2021.01.740\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2021.01.740","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白激酶 A(PKA)途径是调节酵母菌细胞生长和许多相关生理特性的主要信号转导途径,是营养供应的函数。葡萄糖对 PKA 的激活是由 G 蛋白偶联受体(GPCR)Gpr1 和次级信使 cAMP 介导的。其他营养物质,包括氮、磷酸盐和硫酸盐,也会通过营养物质受体激活相应饥饿细胞中的 PKA,但显然没有 cAMP 信号传导。现在,我们使用优化的基于 EPAC 的荧光共振能量转移(FRET)传感器来精确监测添加营养物质后体内的 cAMP 水平。我们发现,GPCR 介导的葡萄糖激活 PKA 与体内 cAMP 水平的快速瞬时增加有关,而营养素受体介导的氮、磷酸盐或硫酸盐激活与体内 cAMP 的显著增加无关。我们还证明了 Gap1 氨基酸受体与 PKA 催化亚基 Tpk1、2 和 3 之间的直接物理相互作用。此外,我们还揭示了营养素受体中的一个保守共识基团,该基团也存在于 PKA 的调节亚基 Bcy1 中。这表明,营养素受体对 PKA 的激活可能是由结合的 PKA 催化亚基直接释放介导的,由受体转运底物过程中发生的构象变化触发。我们的研究结果支持这样一种模式,即营养素受体是 GPCR 的进化祖先,与 GPCR 用于激活 PKA 的间接 cAMP 第二信使信号机制相比,营养素受体采用了更原始的直接信号机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nutrient sensing and cAMP signaling in yeast: G-protein coupled receptor versus transceptor activation of PKA.

A major signal transduction pathway regulating cell growth and many associated physiological properties as a function of nutrient availability in the yeast Saccharomyces cerevisiae is the protein kinase A (PKA) pathway. Glucose activation of PKA is mediated by G-protein coupled receptor (GPCR) Gpr1, and secondary messenger cAMP. Other nutrients, including nitrogen, phosphate and sulfate, activate PKA in accordingly-starved cells through nutrient transceptors, but apparently without cAMP signaling. We have now used an optimized EPAC-based fluorescence resonance energy transfer (FRET) sensor to precisely monitor in vivo cAMP levels after nutrient addition. We show that GPCR-mediated glucose activation of PKA is correlated with a rapid transient increase in the cAMP level in vivo, whereas nutrient transceptor-mediated activation by nitrogen, phosphate or sulfate, is not associated with any significant increase in cAMP in vivo. We also demonstrate direct physical interaction between the Gap1 amino acid transceptor and the catalytic subunits of PKA, Tpk1, 2 and 3. In addition, we reveal a conserved consensus motif in the nutrient transceptors that is also present in Bcy1, the regulatory subunit of PKA. This suggests that nutrient transceptor activation of PKA may be mediated by direct release of bound PKA catalytic subunits, triggered by the conformational changes occurring during transport of the substrate by the transceptor. Our results support a model in which nutrient transceptors are evolutionary ancestors of GPCRs, employing a more primitive direct signaling mechanism compared to the indirect cAMP second-messenger signaling mechanism used by GPCRs for activation of PKA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Cell
Microbial Cell Multiple-
CiteScore
6.40
自引率
0.00%
发文量
32
审稿时长
12 weeks
期刊最新文献
Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis. Patterns of protein synthesis in the budding yeast cell cycle: variable or constant? Direct detection of stringent alarmones (pp)pGpp using malachite green. Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1