Philip S Ringrose, Anne-Kari Furre, Stuart M V Gilfillan, Samuel Krevor, Martin Landrø, Rory Leslie, Tip Meckel, Bamshad Nazarian, Adeel Zahid
{"title":"含盐含水层中二氧化碳的储存:物理化学过程、关键限制和扩大潜力。","authors":"Philip S Ringrose, Anne-Kari Furre, Stuart M V Gilfillan, Samuel Krevor, Martin Landrø, Rory Leslie, Tip Meckel, Bamshad Nazarian, Adeel Zahid","doi":"10.1146/annurev-chembioeng-093020-091447","DOIUrl":null,"url":null,"abstract":"<p><p>CO<sub>2</sub> storage in saline aquifers offers a realistic means of achieving globally significant reductions in greenhouse gas emissions at the scale of billions of tonnes per year. We review insights into the processes involved using well-documented industrial-scale projects, supported by a range of laboratory analyses, field studies, and flow simulations. The main topics we address are (<i>a</i>) the significant physicochemical processes, (<i>b</i>) the factors limiting CO<sub>2</sub> storage capacity, and (<i>c</i>) the requirements for global scale-up.Although CO<sub>2</sub> capture and storage (CCS) technology can be considered mature and proven, it requires significant and rapid scale-up to meet the objectives of the Paris Climate Agreement. The projected growth in the number of CO<sub>2</sub> injection wells required is significantly lower than the historic petroleum industry drill rates, indicating that decarbonization via CCS is a highly credible and affordable ambition for modern human society. Several technology developments are needed to reduce deployment costs and to stimulate widespread adoption of this technology, and these should focus on demonstration of long-term retention and safety of CO<sub>2</sub> storage and development of smart ways of handling injection wells and pressure, cost-effective monitoring solutions, and deployment of CCS hubs with associated infrastructure.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Storage of Carbon Dioxide in Saline Aquifers: Physicochemical Processes, Key Constraints, and Scale-Up Potential.\",\"authors\":\"Philip S Ringrose, Anne-Kari Furre, Stuart M V Gilfillan, Samuel Krevor, Martin Landrø, Rory Leslie, Tip Meckel, Bamshad Nazarian, Adeel Zahid\",\"doi\":\"10.1146/annurev-chembioeng-093020-091447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CO<sub>2</sub> storage in saline aquifers offers a realistic means of achieving globally significant reductions in greenhouse gas emissions at the scale of billions of tonnes per year. We review insights into the processes involved using well-documented industrial-scale projects, supported by a range of laboratory analyses, field studies, and flow simulations. The main topics we address are (<i>a</i>) the significant physicochemical processes, (<i>b</i>) the factors limiting CO<sub>2</sub> storage capacity, and (<i>c</i>) the requirements for global scale-up.Although CO<sub>2</sub> capture and storage (CCS) technology can be considered mature and proven, it requires significant and rapid scale-up to meet the objectives of the Paris Climate Agreement. The projected growth in the number of CO<sub>2</sub> injection wells required is significantly lower than the historic petroleum industry drill rates, indicating that decarbonization via CCS is a highly credible and affordable ambition for modern human society. Several technology developments are needed to reduce deployment costs and to stimulate widespread adoption of this technology, and these should focus on demonstration of long-term retention and safety of CO<sub>2</sub> storage and development of smart ways of handling injection wells and pressure, cost-effective monitoring solutions, and deployment of CCS hubs with associated infrastructure.</p>\",\"PeriodicalId\":8234,\"journal\":{\"name\":\"Annual review of chemical and biomolecular engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of chemical and biomolecular engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-chembioeng-093020-091447\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-093020-091447","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Storage of Carbon Dioxide in Saline Aquifers: Physicochemical Processes, Key Constraints, and Scale-Up Potential.
CO2 storage in saline aquifers offers a realistic means of achieving globally significant reductions in greenhouse gas emissions at the scale of billions of tonnes per year. We review insights into the processes involved using well-documented industrial-scale projects, supported by a range of laboratory analyses, field studies, and flow simulations. The main topics we address are (a) the significant physicochemical processes, (b) the factors limiting CO2 storage capacity, and (c) the requirements for global scale-up.Although CO2 capture and storage (CCS) technology can be considered mature and proven, it requires significant and rapid scale-up to meet the objectives of the Paris Climate Agreement. The projected growth in the number of CO2 injection wells required is significantly lower than the historic petroleum industry drill rates, indicating that decarbonization via CCS is a highly credible and affordable ambition for modern human society. Several technology developments are needed to reduce deployment costs and to stimulate widespread adoption of this technology, and these should focus on demonstration of long-term retention and safety of CO2 storage and development of smart ways of handling injection wells and pressure, cost-effective monitoring solutions, and deployment of CCS hubs with associated infrastructure.
期刊介绍:
The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.