临床事件的集合序列表示学习诊断预测。

Tianran Zhang, Muhao Chen, Alex A T Bui
{"title":"临床事件的集合序列表示学习诊断预测。","authors":"Tianran Zhang,&nbsp;Muhao Chen,&nbsp;Alex A T Bui","doi":"10.1007/978-3-030-59137-3_31","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic health records (EHRs) contain both ordered and unordered chronologies of clinical events that occur during a patient encounter. However, during data preprocessing steps, many predictive models impose a predefined order on unordered clinical events sets (e.g., alphabetical, natural order from the chart, etc.), which is potentially incompatible with the temporal nature of the sequence and predictive task. To address this issue, we propose DPSS, which seeks to capture each patient's clinical event records as sequences of event sets. For each clinical event set, we assume that the predictive model should be invariant to the order of concurrent events and thus employ a novel permutation sampling mechanism. This paper evaluates the use of this permuted sampling method given different data-driven models for predicting a heart failure (HF) diagnosis in subsequent patient visits. Experimental results using the MIMIC-III dataset show that the permutation sampling mechanism offers improved discriminative power based on the area under the receiver operating curve (AUROC) and precision-recall curve (pr-AUC) metrics as HF diagnosis prediction becomes more robust to different data ordering schemes.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"12299 ","pages":"348-358"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143801/pdf/nihms-1698603.pdf","citationCount":"0","resultStr":"{\"title\":\"Diagnostic Prediction with Sequence-of-sets Representation Learning for Clinical Events.\",\"authors\":\"Tianran Zhang,&nbsp;Muhao Chen,&nbsp;Alex A T Bui\",\"doi\":\"10.1007/978-3-030-59137-3_31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic health records (EHRs) contain both ordered and unordered chronologies of clinical events that occur during a patient encounter. However, during data preprocessing steps, many predictive models impose a predefined order on unordered clinical events sets (e.g., alphabetical, natural order from the chart, etc.), which is potentially incompatible with the temporal nature of the sequence and predictive task. To address this issue, we propose DPSS, which seeks to capture each patient's clinical event records as sequences of event sets. For each clinical event set, we assume that the predictive model should be invariant to the order of concurrent events and thus employ a novel permutation sampling mechanism. This paper evaluates the use of this permuted sampling method given different data-driven models for predicting a heart failure (HF) diagnosis in subsequent patient visits. Experimental results using the MIMIC-III dataset show that the permutation sampling mechanism offers improved discriminative power based on the area under the receiver operating curve (AUROC) and precision-recall curve (pr-AUC) metrics as HF diagnosis prediction becomes more robust to different data ordering schemes.</p>\",\"PeriodicalId\":72303,\"journal\":{\"name\":\"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )\",\"volume\":\"12299 \",\"pages\":\"348-358\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143801/pdf/nihms-1698603.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-59137-3_31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-59137-3_31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子健康记录(EHRs)包含患者就诊期间发生的临床事件的有序和无序年表。然而,在数据预处理过程中,许多预测模型对无序的临床事件集施加了预定义的顺序(例如,字母顺序,图表的自然顺序等),这可能与序列和预测任务的时间性质不兼容。为了解决这个问题,我们提出了DPSS,它试图将每个患者的临床事件记录捕获为事件集序列。对于每个临床事件集,我们假设预测模型对并发事件的顺序是不变的,因此采用了一种新的排列抽样机制。本文评估使用这种排列抽样方法给出不同的数据驱动模型预测心衰(HF)诊断在随后的病人就诊。使用MIMIC-III数据集的实验结果表明,排列抽样机制可以提高基于接收者工作曲线下面积(AUROC)和精确召回率曲线(pr-AUC)指标的判别能力,使HF诊断预测对不同数据排序方案具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diagnostic Prediction with Sequence-of-sets Representation Learning for Clinical Events.

Electronic health records (EHRs) contain both ordered and unordered chronologies of clinical events that occur during a patient encounter. However, during data preprocessing steps, many predictive models impose a predefined order on unordered clinical events sets (e.g., alphabetical, natural order from the chart, etc.), which is potentially incompatible with the temporal nature of the sequence and predictive task. To address this issue, we propose DPSS, which seeks to capture each patient's clinical event records as sequences of event sets. For each clinical event set, we assume that the predictive model should be invariant to the order of concurrent events and thus employ a novel permutation sampling mechanism. This paper evaluates the use of this permuted sampling method given different data-driven models for predicting a heart failure (HF) diagnosis in subsequent patient visits. Experimental results using the MIMIC-III dataset show that the permutation sampling mechanism offers improved discriminative power based on the area under the receiver operating curve (AUROC) and precision-recall curve (pr-AUC) metrics as HF diagnosis prediction becomes more robust to different data ordering schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Hypotension Prediction in Real-time Patient Monitoring Through Deep Learning: A Novel Application of XResNet with Contrastive Learning and Value Attention Mechanisms. Minimizing Survey Questions for PTSD Prediction Following Acute Trauma. Uncovering hidden therapeutic indications through drug repurposing with graph neural networks and heterogeneous data. Learning EKG Diagnostic Models with Hierarchical Class Label Dependencies. Predicting Kidney Transplant Survival using Multiple Feature Representations for HLAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1