{"title":"孔形成抵抗体对细胞死亡和信号传导的调控。","authors":"Guozhi Bi, Jian-Min Zhou","doi":"10.1146/annurev-phyto-020620-095952","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleotide-binding leucine-rich repeat receptors (NLRs) are the largest class of immune receptors in plants. They play a key role in the plant surveillance system by monitoring pathogen effectors that are delivered into the plant cell. Recent structural biology and biochemical analyses have uncovered how NLRs are activated to form oligomeric resistosomes upon the recognition of pathogen effectors. In the resistosome, the signaling domain of the NLR is brought to the center of a ringed structure to initiate immune signaling and regulated cell death (RCD). The N terminus of the coiled-coil (CC) domain of the NLR protein HOPZ-ACTIVATED RESISTANCE 1 likely forms a pore in the plasma membrane to trigger RCD in a way analogous to animal pore-forming proteins that trigger necroptosis or pyroptosis. NLRs that carry TOLL-INTERLEUKIN1-RECEPTOR as a signaling domain may also employ pore-forming resistosomes for RCD execution. In addition, increasing evidence supports intimate connections between NLRs and surface receptors in immune signaling. These new findings are rapidly advancing our understanding of the plant immune system.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"59 ","pages":"239-263"},"PeriodicalIF":9.1000,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Regulation of Cell Death and Signaling by Pore-Forming Resistosomes.\",\"authors\":\"Guozhi Bi, Jian-Min Zhou\",\"doi\":\"10.1146/annurev-phyto-020620-095952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nucleotide-binding leucine-rich repeat receptors (NLRs) are the largest class of immune receptors in plants. They play a key role in the plant surveillance system by monitoring pathogen effectors that are delivered into the plant cell. Recent structural biology and biochemical analyses have uncovered how NLRs are activated to form oligomeric resistosomes upon the recognition of pathogen effectors. In the resistosome, the signaling domain of the NLR is brought to the center of a ringed structure to initiate immune signaling and regulated cell death (RCD). The N terminus of the coiled-coil (CC) domain of the NLR protein HOPZ-ACTIVATED RESISTANCE 1 likely forms a pore in the plasma membrane to trigger RCD in a way analogous to animal pore-forming proteins that trigger necroptosis or pyroptosis. NLRs that carry TOLL-INTERLEUKIN1-RECEPTOR as a signaling domain may also employ pore-forming resistosomes for RCD execution. In addition, increasing evidence supports intimate connections between NLRs and surface receptors in immune signaling. These new findings are rapidly advancing our understanding of the plant immune system.</p>\",\"PeriodicalId\":8251,\"journal\":{\"name\":\"Annual review of phytopathology\",\"volume\":\"59 \",\"pages\":\"239-263\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2021-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-phyto-020620-095952\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-phyto-020620-095952","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Regulation of Cell Death and Signaling by Pore-Forming Resistosomes.
Nucleotide-binding leucine-rich repeat receptors (NLRs) are the largest class of immune receptors in plants. They play a key role in the plant surveillance system by monitoring pathogen effectors that are delivered into the plant cell. Recent structural biology and biochemical analyses have uncovered how NLRs are activated to form oligomeric resistosomes upon the recognition of pathogen effectors. In the resistosome, the signaling domain of the NLR is brought to the center of a ringed structure to initiate immune signaling and regulated cell death (RCD). The N terminus of the coiled-coil (CC) domain of the NLR protein HOPZ-ACTIVATED RESISTANCE 1 likely forms a pore in the plasma membrane to trigger RCD in a way analogous to animal pore-forming proteins that trigger necroptosis or pyroptosis. NLRs that carry TOLL-INTERLEUKIN1-RECEPTOR as a signaling domain may also employ pore-forming resistosomes for RCD execution. In addition, increasing evidence supports intimate connections between NLRs and surface receptors in immune signaling. These new findings are rapidly advancing our understanding of the plant immune system.
期刊介绍:
The Annual Review of Phytopathology, established in 1963, covers major advancements in plant pathology, including plant disease diagnosis, pathogens, host-pathogen Interactions, epidemiology and ecology, breeding for resistance and plant disease management, and includes a special section on the development of concepts. The journal is now open access through Annual Reviews' Subscribe to Open program, with articles published under a CC BY license.