{"title":"血流干扰下机器人血管内心导管的接触稳定性和接触安全性分析","authors":"Ran Hao, Nate Lombard Poirot, M Cenk Çavuşoğlu","doi":"10.1109/iros45743.2020.9341527","DOIUrl":null,"url":null,"abstract":"<p><p>This paper studies the contact stability and contact safety of a robotic intravascular cardiac catheter under blood flow disturbances while in contact with tissue surface. A probabilistic blood flow disturbance model, where the blood flow drag forces on the catheter body are approximated using a quasi-static model, is introduced. Using this blood flow disturbance model, probabilistic contact stability and contact safety metrics, employing a sample based representation of the blood flow velocity distribution, are proposed. Finally, the contact stability and contact safety of a MRI-actuated robotic catheter are analyzed using these models in a specific example scenario under left pulmonary inferior vein (LIV) blood flow disturbances.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2020 ","pages":"3216-3223"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8165756/pdf/nihms-1705038.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of Contact Stability and Contact Safety of a Robotic Intravascular Cardiac Catheter under Blood Flow Disturbances.\",\"authors\":\"Ran Hao, Nate Lombard Poirot, M Cenk Çavuşoğlu\",\"doi\":\"10.1109/iros45743.2020.9341527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper studies the contact stability and contact safety of a robotic intravascular cardiac catheter under blood flow disturbances while in contact with tissue surface. A probabilistic blood flow disturbance model, where the blood flow drag forces on the catheter body are approximated using a quasi-static model, is introduced. Using this blood flow disturbance model, probabilistic contact stability and contact safety metrics, employing a sample based representation of the blood flow velocity distribution, are proposed. Finally, the contact stability and contact safety of a MRI-actuated robotic catheter are analyzed using these models in a specific example scenario under left pulmonary inferior vein (LIV) blood flow disturbances.</p>\",\"PeriodicalId\":74523,\"journal\":{\"name\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"2020 \",\"pages\":\"3216-3223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8165756/pdf/nihms-1705038.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iros45743.2020.9341527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iros45743.2020.9341527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Contact Stability and Contact Safety of a Robotic Intravascular Cardiac Catheter under Blood Flow Disturbances.
This paper studies the contact stability and contact safety of a robotic intravascular cardiac catheter under blood flow disturbances while in contact with tissue surface. A probabilistic blood flow disturbance model, where the blood flow drag forces on the catheter body are approximated using a quasi-static model, is introduced. Using this blood flow disturbance model, probabilistic contact stability and contact safety metrics, employing a sample based representation of the blood flow velocity distribution, are proposed. Finally, the contact stability and contact safety of a MRI-actuated robotic catheter are analyzed using these models in a specific example scenario under left pulmonary inferior vein (LIV) blood flow disturbances.