{"title":"受体相互作用蛋白140通过调节人脑胶质瘤细胞系E2F1增强替莫唑胺诱导的细胞凋亡。","authors":"Hong-Chieh Tsai, Kuo-Chen Wei, Pin-Yuan Chen, Chiung-Yin Huang, Ko-Ting Chen, Ya-Jui Lin, Hsiao-Wei Cheng, Chun-Hao Huang, Hsiang-Tsui Wang","doi":"10.1007/s12017-021-08667-x","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM), a grade IV glioma, is responsible for the highest years of potential life lost among cancers. The poor prognosis is attributable to its high recurrence rate, caused in part by the development of resistance to chemotherapy. Receptor-interacting protein 140 (RIP140) is a very versatile coregulator of nuclear receptors and transcription factors. Although many of the pathways regulated by RIP140 contribute significantly to cancer progression, the function of RIP140 in GBM remains to be determined. In this study, we found that higher RIP140 expression was associated with prolonged survival in patients with newly diagnosed GBM. Intracellular RIP140 levels were increased after E2F1 activation following temozolomide (TMZ) treatment, which in turn modulated the expression of E2F1-targeted apoptosis-related genes. Overexpression of RIP140 reduced glioma cell proliferation and migration, induced cellular apoptosis, and sensitized GBM cells to TMZ. Conversely, knockdown of RIP140 increased TMZ resistance. Taken together, our results suggest that RIP140 prolongs the survival of patients with GBM both by inhibiting tumor cell proliferation and migration and by increasing cellular sensitivity to chemotherapy. This study helps improve our understanding of glioma recurrence and may facilitate the development of more effective treatments.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12017-021-08667-x","citationCount":"0","resultStr":"{\"title\":\"Receptor-Interacting Protein 140 Enhanced Temozolomide-Induced Cellular Apoptosis Through Regulation of E2F1 in Human Glioma Cell Lines.\",\"authors\":\"Hong-Chieh Tsai, Kuo-Chen Wei, Pin-Yuan Chen, Chiung-Yin Huang, Ko-Ting Chen, Ya-Jui Lin, Hsiao-Wei Cheng, Chun-Hao Huang, Hsiang-Tsui Wang\",\"doi\":\"10.1007/s12017-021-08667-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma (GBM), a grade IV glioma, is responsible for the highest years of potential life lost among cancers. The poor prognosis is attributable to its high recurrence rate, caused in part by the development of resistance to chemotherapy. Receptor-interacting protein 140 (RIP140) is a very versatile coregulator of nuclear receptors and transcription factors. Although many of the pathways regulated by RIP140 contribute significantly to cancer progression, the function of RIP140 in GBM remains to be determined. In this study, we found that higher RIP140 expression was associated with prolonged survival in patients with newly diagnosed GBM. Intracellular RIP140 levels were increased after E2F1 activation following temozolomide (TMZ) treatment, which in turn modulated the expression of E2F1-targeted apoptosis-related genes. Overexpression of RIP140 reduced glioma cell proliferation and migration, induced cellular apoptosis, and sensitized GBM cells to TMZ. Conversely, knockdown of RIP140 increased TMZ resistance. Taken together, our results suggest that RIP140 prolongs the survival of patients with GBM both by inhibiting tumor cell proliferation and migration and by increasing cellular sensitivity to chemotherapy. This study helps improve our understanding of glioma recurrence and may facilitate the development of more effective treatments.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12017-021-08667-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12017-021-08667-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-021-08667-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
胶质母细胞瘤(GBM)是一种四级胶质瘤,是癌症中导致潜在寿命损失最高的。预后差的原因是其复发率高,部分原因是化疗耐药的发展。受体相互作用蛋白140 (Receptor-interacting protein 140, RIP140)是一种功能广泛的核受体和转录因子的协同调节剂。尽管RIP140调控的许多通路对癌症进展有显著贡献,但RIP140在GBM中的功能仍有待确定。在这项研究中,我们发现在新诊断的GBM患者中,较高的RIP140表达与延长生存期相关。替莫唑胺(temozolomide, TMZ)激活E2F1后,细胞内RIP140水平升高,进而调节E2F1靶向凋亡相关基因的表达。RIP140的过表达降低胶质瘤细胞的增殖和迁移,诱导细胞凋亡,并使GBM细胞对TMZ敏感。相反,RIP140的敲低增加了TMZ抗性。综上所述,我们的研究结果表明,RIP140通过抑制肿瘤细胞增殖和迁移以及增加细胞对化疗的敏感性来延长GBM患者的生存期。这项研究有助于提高我们对胶质瘤复发的理解,并可能促进更有效治疗的发展。
Receptor-Interacting Protein 140 Enhanced Temozolomide-Induced Cellular Apoptosis Through Regulation of E2F1 in Human Glioma Cell Lines.
Glioblastoma (GBM), a grade IV glioma, is responsible for the highest years of potential life lost among cancers. The poor prognosis is attributable to its high recurrence rate, caused in part by the development of resistance to chemotherapy. Receptor-interacting protein 140 (RIP140) is a very versatile coregulator of nuclear receptors and transcription factors. Although many of the pathways regulated by RIP140 contribute significantly to cancer progression, the function of RIP140 in GBM remains to be determined. In this study, we found that higher RIP140 expression was associated with prolonged survival in patients with newly diagnosed GBM. Intracellular RIP140 levels were increased after E2F1 activation following temozolomide (TMZ) treatment, which in turn modulated the expression of E2F1-targeted apoptosis-related genes. Overexpression of RIP140 reduced glioma cell proliferation and migration, induced cellular apoptosis, and sensitized GBM cells to TMZ. Conversely, knockdown of RIP140 increased TMZ resistance. Taken together, our results suggest that RIP140 prolongs the survival of patients with GBM both by inhibiting tumor cell proliferation and migration and by increasing cellular sensitivity to chemotherapy. This study helps improve our understanding of glioma recurrence and may facilitate the development of more effective treatments.