Mario M Modena, Ketki Chawla, Flavio Lombardo, Sebastian C Bürgel, Gordana Panic, Jennifer Keiser, Andreas Hierlemann
{"title":"基于阻抗法检测曼氏血吸虫幼虫活力的药物筛选。","authors":"Mario M Modena, Ketki Chawla, Flavio Lombardo, Sebastian C Bürgel, Gordana Panic, Jennifer Keiser, Andreas Hierlemann","doi":"10.1109/BIOCAS.2017.8325227","DOIUrl":null,"url":null,"abstract":"<p><p>Human schistosomiasis is a neglected tropical disease caused by trematodes, affecting almost 250 million people worldwide. For the past 30 years, treatment has relied on the large-scale administration of praziquantel. However, concerns regarding the appearance of drug-resistance parasites require efforts in identifying novel classes of suitable drugs against schistosomiasis. The current drug screening system is manual, slow and subjective. We present here a microfluidic platform capable of detecting changes in viability of <i>Schistosoma mansoni</i> larvae (Newly Transformed Schistosomula, NTS). This platform could serve as a pre-screening tool for the identification of drug candidates. It is composed of a pair of coplanar electrodes integrated in a microfluidic channel for the detection and quantification of NTS motility. Comparison of viability detection by using our platform with the standard visual evaluation shows that our method is able to reliably detect viable and non-viable NTS at high sensitivity, also in case of low-motility parasites, while enabling a 10 fold decrease in sample consumption.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2017 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BIOCAS.2017.8325227","citationCount":"4","resultStr":"{\"title\":\"Impedance-based detection of <i>Schistosoma mansoni</i> larvae viability for drug screening.\",\"authors\":\"Mario M Modena, Ketki Chawla, Flavio Lombardo, Sebastian C Bürgel, Gordana Panic, Jennifer Keiser, Andreas Hierlemann\",\"doi\":\"10.1109/BIOCAS.2017.8325227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human schistosomiasis is a neglected tropical disease caused by trematodes, affecting almost 250 million people worldwide. For the past 30 years, treatment has relied on the large-scale administration of praziquantel. However, concerns regarding the appearance of drug-resistance parasites require efforts in identifying novel classes of suitable drugs against schistosomiasis. The current drug screening system is manual, slow and subjective. We present here a microfluidic platform capable of detecting changes in viability of <i>Schistosoma mansoni</i> larvae (Newly Transformed Schistosomula, NTS). This platform could serve as a pre-screening tool for the identification of drug candidates. It is composed of a pair of coplanar electrodes integrated in a microfluidic channel for the detection and quantification of NTS motility. Comparison of viability detection by using our platform with the standard visual evaluation shows that our method is able to reliably detect viable and non-viable NTS at high sensitivity, also in case of low-motility parasites, while enabling a 10 fold decrease in sample consumption.</p>\",\"PeriodicalId\":73279,\"journal\":{\"name\":\"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"2017 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/BIOCAS.2017.8325227\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2017.8325227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Impedance-based detection of Schistosoma mansoni larvae viability for drug screening.
Human schistosomiasis is a neglected tropical disease caused by trematodes, affecting almost 250 million people worldwide. For the past 30 years, treatment has relied on the large-scale administration of praziquantel. However, concerns regarding the appearance of drug-resistance parasites require efforts in identifying novel classes of suitable drugs against schistosomiasis. The current drug screening system is manual, slow and subjective. We present here a microfluidic platform capable of detecting changes in viability of Schistosoma mansoni larvae (Newly Transformed Schistosomula, NTS). This platform could serve as a pre-screening tool for the identification of drug candidates. It is composed of a pair of coplanar electrodes integrated in a microfluidic channel for the detection and quantification of NTS motility. Comparison of viability detection by using our platform with the standard visual evaluation shows that our method is able to reliably detect viable and non-viable NTS at high sensitivity, also in case of low-motility parasites, while enabling a 10 fold decrease in sample consumption.