利用时间分辨 X 射线共振磁反射率实现超快磁深度剖析。

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL Structural Dynamics-Us Pub Date : 2021-06-23 eCollection Date: 2021-05-01 DOI:10.1063/4.0000109
Valentin Chardonnet, Marcel Hennes, Romain Jarrier, Renaud Delaunay, Nicolas Jaouen, Marion Kuhlmann, Nagitha Ekanayake, Cyril Léveillé, Clemens von Korff Schmising, Daniel Schick, Kelvin Yao, Xuan Liu, Gheorghe S Chiuzbăian, Jan Lüning, Boris Vodungbo, Emmanuelle Jal
{"title":"利用时间分辨 X 射线共振磁反射率实现超快磁深度剖析。","authors":"Valentin Chardonnet, Marcel Hennes, Romain Jarrier, Renaud Delaunay, Nicolas Jaouen, Marion Kuhlmann, Nagitha Ekanayake, Cyril Léveillé, Clemens von Korff Schmising, Daniel Schick, Kelvin Yao, Xuan Liu, Gheorghe S Chiuzbăian, Jan Lüning, Boris Vodungbo, Emmanuelle Jal","doi":"10.1063/4.0000109","DOIUrl":null,"url":null,"abstract":"<p><p>During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump-probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm ( <math><mrow><mo>≃</mo> <mn>310</mn> <mo> </mo> <mtext>eV</mtext></mrow> </math> ), we were able to probe close to the Fe <i>L</i> <sub>3</sub> edge ( <math><mrow><mn>706.8</mn> <mo> </mo> <mtext>eV</mtext></mrow> </math> ) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225393/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toward ultrafast magnetic depth profiling using time-resolved x-ray resonant magnetic reflectivity.\",\"authors\":\"Valentin Chardonnet, Marcel Hennes, Romain Jarrier, Renaud Delaunay, Nicolas Jaouen, Marion Kuhlmann, Nagitha Ekanayake, Cyril Léveillé, Clemens von Korff Schmising, Daniel Schick, Kelvin Yao, Xuan Liu, Gheorghe S Chiuzbăian, Jan Lüning, Boris Vodungbo, Emmanuelle Jal\",\"doi\":\"10.1063/4.0000109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump-probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm ( <math><mrow><mo>≃</mo> <mn>310</mn> <mo> </mo> <mtext>eV</mtext></mrow> </math> ), we were able to probe close to the Fe <i>L</i> <sub>3</sub> edge ( <math><mrow><mn>706.8</mn> <mo> </mo> <mtext>eV</mtext></mrow> </math> ) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225393/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000109\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000109","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在过去二十年里,人们开发了多种模型来解释飞秒光激发后磁化的超快淬灭。这些模型可分为两大类,分别依赖于角动量的局部或非局部转移。利用时间分辨 X 射线共振磁反射率获取飞秒分辨率的磁深度剖面图,可以区分局部效应和非局部效应。在此,我们利用 FLASH2 自由电子激光器(FEL)上的定制反射仪,在泵浦探针几何中演示了这一技术的可行性。虽然FLASH2仅限于产生基本波长为4纳米(≃ 310 eV)的光子,但我们能够利用FEL的三次谐波探测磁性薄膜的铁L 3边缘(706.8 eV)。我们的方法使我们能够提取结构和磁不对称信号,揭示出不同时间尺度上的两种动态,它们支撑着非均质磁化损失和磁层厚度 2 Å 的显著扩张,随后是振荡。未来对数据的分析将为结合飞秒和纳米分辨率对瞬态磁深度剖面进行全面定量描述铺平道路,这将为深入了解超快退磁的微观机制提供更多信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward ultrafast magnetic depth profiling using time-resolved x-ray resonant magnetic reflectivity.

During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump-probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm ( 310 eV ), we were able to probe close to the Fe L 3 edge ( 706.8 eV ) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
期刊最新文献
Structure and spin of the low- and high-spin states of Fe2+(phen)3 studied by x-ray scattering and emission spectroscopy. Ultrafast energy-dispersive soft-x-ray diffraction in the water window with a laser-driven source. Laue-DIALS: Open-source software for polychromatic x-ray diffraction data. Spatiotemporal determination of photoinduced strain in a Weyl semimetal. High-repetition-rate ultrafast electron diffraction with direct electron detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1