通过在有能力的EMS位置模型中集成站点相互依赖性来增强覆盖范围。

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Health Care Management Science Pub Date : 2022-03-01 Epub Date: 2021-07-13 DOI:10.1007/s10729-021-09562-4
Matthias Grot, Tristan Becker, Pia Mareike Steenweg, Brigitte Werners
{"title":"通过在有能力的EMS位置模型中集成站点相互依赖性来增强覆盖范围。","authors":"Matthias Grot,&nbsp;Tristan Becker,&nbsp;Pia Mareike Steenweg,&nbsp;Brigitte Werners","doi":"10.1007/s10729-021-09562-4","DOIUrl":null,"url":null,"abstract":"<p><p>In order to allocate limited resources in emergency medical services (EMS) networks, mathematical models are used to select sites and their capacities. Many existing standard models are based on simplifying assumptions, including site independency and a similar system-wide busyness of ambulances. In practice, when a site is busy, a call is forwarded to another site. Thus, the busyness of each site depends not only on the rate of calls in the surrounding area, but also on interactions with other facilities. If the demand varies across the urban area, assuming an average system-wide server busy fraction may lead to an overestimation of the actual coverage. We show that site interdependencies can be integrated into the well-known Maximum Expected Covering Location Problem (MEXCLP) by introducing an upper bound for the busyness of each site. We apply our new mathematical formulation to the case of a local EMS provider. To evaluate the solution quality, we use a discrete event simulation based on anonymized real-world call data. Results of our simulation-optimization approach indicate that the coverage can be improved in most cases by taking site interdependencies into account, leading to an improved ambulance allocation and a faster emergency care.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"25 1","pages":"42-62"},"PeriodicalIF":2.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10729-021-09562-4","citationCount":"5","resultStr":"{\"title\":\"Enhanced coverage by integrating site interdependencies in capacitated EMS location models.\",\"authors\":\"Matthias Grot,&nbsp;Tristan Becker,&nbsp;Pia Mareike Steenweg,&nbsp;Brigitte Werners\",\"doi\":\"10.1007/s10729-021-09562-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to allocate limited resources in emergency medical services (EMS) networks, mathematical models are used to select sites and their capacities. Many existing standard models are based on simplifying assumptions, including site independency and a similar system-wide busyness of ambulances. In practice, when a site is busy, a call is forwarded to another site. Thus, the busyness of each site depends not only on the rate of calls in the surrounding area, but also on interactions with other facilities. If the demand varies across the urban area, assuming an average system-wide server busy fraction may lead to an overestimation of the actual coverage. We show that site interdependencies can be integrated into the well-known Maximum Expected Covering Location Problem (MEXCLP) by introducing an upper bound for the busyness of each site. We apply our new mathematical formulation to the case of a local EMS provider. To evaluate the solution quality, we use a discrete event simulation based on anonymized real-world call data. Results of our simulation-optimization approach indicate that the coverage can be improved in most cases by taking site interdependencies into account, leading to an improved ambulance allocation and a faster emergency care.</p>\",\"PeriodicalId\":12903,\"journal\":{\"name\":\"Health Care Management Science\",\"volume\":\"25 1\",\"pages\":\"42-62\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10729-021-09562-4\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Care Management Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10729-021-09562-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-021-09562-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 5

摘要

为了在紧急医疗服务(EMS)网络中分配有限的资源,采用数学模型来选择站点及其容量。许多现有的标准模型都是基于简化的假设,包括站点独立性和类似的全系统救护车繁忙程度。实际上,当一个站点忙时,呼叫会被转移到另一个站点。因此,每个站点的繁忙程度不仅取决于周边地区的呼叫率,还取决于与其他设施的互动。如果需求在整个城市地区有所不同,假设系统范围内的平均服务器繁忙部分可能会导致对实际覆盖范围的高估。通过引入每个站点繁忙度的上界,我们证明了站点相互依赖性可以集成到著名的最大期望覆盖位置问题(mexcp)中。我们将新的数学公式应用到本地EMS供应商的案例中。为了评估解决方案的质量,我们使用了基于匿名真实世界呼叫数据的离散事件模拟。我们的模拟优化方法的结果表明,在大多数情况下,通过考虑站点的相互依赖性,可以提高覆盖范围,从而改善救护车分配和更快的紧急护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced coverage by integrating site interdependencies in capacitated EMS location models.

In order to allocate limited resources in emergency medical services (EMS) networks, mathematical models are used to select sites and their capacities. Many existing standard models are based on simplifying assumptions, including site independency and a similar system-wide busyness of ambulances. In practice, when a site is busy, a call is forwarded to another site. Thus, the busyness of each site depends not only on the rate of calls in the surrounding area, but also on interactions with other facilities. If the demand varies across the urban area, assuming an average system-wide server busy fraction may lead to an overestimation of the actual coverage. We show that site interdependencies can be integrated into the well-known Maximum Expected Covering Location Problem (MEXCLP) by introducing an upper bound for the busyness of each site. We apply our new mathematical formulation to the case of a local EMS provider. To evaluate the solution quality, we use a discrete event simulation based on anonymized real-world call data. Results of our simulation-optimization approach indicate that the coverage can be improved in most cases by taking site interdependencies into account, leading to an improved ambulance allocation and a faster emergency care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
期刊最新文献
Assessing the performance of Portuguese public hospitals before and during COVID-19 outbreak, with optimistic and pessimistic benchmarking approaches. A reinforcement learning approach for the online dynamic home health care scheduling problem. Evaluating machine learning model bias and racial disparities in non-small cell lung cancer using SEER registry data. Forecasting to support EMS tactical planning: what is important and what is not. Health care management science for underserved populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1