{"title":"非洲在生物医学科学领域的全球代表性。","authors":"Nicola Mulder, Lyndon Zass, Yosr Hamdi, Houcemeddine Othman, Sumir Panji, Imane Allali, Yasmina Jaufeerally Fakim","doi":"10.1146/annurev-biodatasci-102920-112550","DOIUrl":null,"url":null,"abstract":"<p><p>African populations are diverse in their ethnicity, language, culture, and genetics. Although plagued by high disease burdens, until recently the continent has largely been excluded from biomedical studies. Along with limitations in research and clinical infrastructure, human capacity, and funding, this omission has resulted in an underrepresentation of African data and disadvantaged African scientists. This review interrogates the relative abundance of biomedical data from Africa, primarily in genomics and other omics. The visibility of African science through publications is also discussed. A challenge encountered in this review is the relative lack of annotation of data on their geographical or population origin, with African countries represented as a single group. In addition to the abovementioned limitations,the global representation of African data may also be attributed to the hesitation to deposit data in public repositories. Whatever the reason, the disparity should be addressed, as African data have enormous value for scientists in Africa and globally.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"African Global Representation in Biomedical Sciences.\",\"authors\":\"Nicola Mulder, Lyndon Zass, Yosr Hamdi, Houcemeddine Othman, Sumir Panji, Imane Allali, Yasmina Jaufeerally Fakim\",\"doi\":\"10.1146/annurev-biodatasci-102920-112550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>African populations are diverse in their ethnicity, language, culture, and genetics. Although plagued by high disease burdens, until recently the continent has largely been excluded from biomedical studies. Along with limitations in research and clinical infrastructure, human capacity, and funding, this omission has resulted in an underrepresentation of African data and disadvantaged African scientists. This review interrogates the relative abundance of biomedical data from Africa, primarily in genomics and other omics. The visibility of African science through publications is also discussed. A challenge encountered in this review is the relative lack of annotation of data on their geographical or population origin, with African countries represented as a single group. In addition to the abovementioned limitations,the global representation of African data may also be attributed to the hesitation to deposit data in public repositories. Whatever the reason, the disparity should be addressed, as African data have enormous value for scientists in Africa and globally.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-102920-112550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-102920-112550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
African Global Representation in Biomedical Sciences.
African populations are diverse in their ethnicity, language, culture, and genetics. Although plagued by high disease burdens, until recently the continent has largely been excluded from biomedical studies. Along with limitations in research and clinical infrastructure, human capacity, and funding, this omission has resulted in an underrepresentation of African data and disadvantaged African scientists. This review interrogates the relative abundance of biomedical data from Africa, primarily in genomics and other omics. The visibility of African science through publications is also discussed. A challenge encountered in this review is the relative lack of annotation of data on their geographical or population origin, with African countries represented as a single group. In addition to the abovementioned limitations,the global representation of African data may also be attributed to the hesitation to deposit data in public repositories. Whatever the reason, the disparity should be addressed, as African data have enormous value for scientists in Africa and globally.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.