{"title":"将 Phecodes 用于电子病历研究:从 PheWAS 到 PheRS。","authors":"Lisa Bastarache","doi":"10.1146/annurev-biodatasci-122320-112352","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic health records (EHRs) are a rich source of data for researchers, but extracting meaningful information out of this highly complex data source is challenging. Phecodes represent one strategy for defining phenotypes for research using EHR data. They are a high-throughput phenotyping tool based on ICD (International Classification of Diseases) codes that can be used to rapidly define the case/control status of thousands of clinically meaningful diseases and conditions. Phecodes were originally developed to conduct phenome-wide association studies to scan for phenotypic associations with common genetic variants. Since then, phecodes have been used to support a wide range of EHR-based phenotyping methods, including the phenotype risk score. This review aims to comprehensively describe the development, validation, and applications of phecodes and suggest some future directions for phecodes and high-throughput phenotyping.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307256/pdf/nihms-1823813.pdf","citationCount":"0","resultStr":"{\"title\":\"Using Phecodes for Research with the Electronic Health Record: From PheWAS to PheRS.\",\"authors\":\"Lisa Bastarache\",\"doi\":\"10.1146/annurev-biodatasci-122320-112352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic health records (EHRs) are a rich source of data for researchers, but extracting meaningful information out of this highly complex data source is challenging. Phecodes represent one strategy for defining phenotypes for research using EHR data. They are a high-throughput phenotyping tool based on ICD (International Classification of Diseases) codes that can be used to rapidly define the case/control status of thousands of clinically meaningful diseases and conditions. Phecodes were originally developed to conduct phenome-wide association studies to scan for phenotypic associations with common genetic variants. Since then, phecodes have been used to support a wide range of EHR-based phenotyping methods, including the phenotype risk score. This review aims to comprehensively describe the development, validation, and applications of phecodes and suggest some future directions for phecodes and high-throughput phenotyping.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307256/pdf/nihms-1823813.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-122320-112352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-122320-112352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Using Phecodes for Research with the Electronic Health Record: From PheWAS to PheRS.
Electronic health records (EHRs) are a rich source of data for researchers, but extracting meaningful information out of this highly complex data source is challenging. Phecodes represent one strategy for defining phenotypes for research using EHR data. They are a high-throughput phenotyping tool based on ICD (International Classification of Diseases) codes that can be used to rapidly define the case/control status of thousands of clinically meaningful diseases and conditions. Phecodes were originally developed to conduct phenome-wide association studies to scan for phenotypic associations with common genetic variants. Since then, phecodes have been used to support a wide range of EHR-based phenotyping methods, including the phenotype risk score. This review aims to comprehensively describe the development, validation, and applications of phecodes and suggest some future directions for phecodes and high-throughput phenotyping.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.