固沙区生物土壤结壳不同演替阶段土壤固碳量和碳排放量的变化

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Carbon Balance and Management Pub Date : 2021-09-13 DOI:10.1186/s13021-021-00190-7
Bo Wang, Jing Liu, Xin Zhang, Chenglong Wang
{"title":"固沙区生物土壤结壳不同演替阶段土壤固碳量和碳排放量的变化","authors":"Bo Wang,&nbsp;Jing Liu,&nbsp;Xin Zhang,&nbsp;Chenglong Wang","doi":"10.1186/s13021-021-00190-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>We investigated the spatio-temporal dynamics of soil carbon dioxide (CO<sub>2</sub>)- and soil methane (CH<sub>4</sub>)-flux during biological soil crust (BSCs) deposition in a sand-binding area in the eastern Chinese Hobq Desert. The trends in soil organic carbon (C) content and density were analyzed during this process. The sampling sites comprised a mobile dune (control) and those with algal, lichen, and moss crust-fixed sands. The desert soil CO<sub>2</sub>- and CH<sub>4</sub>-flux, temperature, and water content were measured from May to October in 2017 and 2018. Simultaneously, organic C content and density were measured and analyzed by stratification.</p><h3>Results</h3><p>The spatio-temporal variation in desert soil CO<sub>2</sub>-flux was apparent. The average CO<sub>2</sub>- fluxes in the control, algal, lichen, and moss sites were 1.67, 2.61, 5.83, and 6.84 mmol m<sup>−2</sup> h<sup>−1</sup>, respectively, during the growing season, and the average CH<sub>4</sub>-fluxes in the four sites were − 1.13, − 1.67, − 3.66, and − 3.77 µmol m<sup>−2</sup> h<sup>−1</sup>, respectively. Soil temperature was significantly positively correlated with CO<sub>2</sub>-flux but could not influence CH<sub>4</sub> absorption, and C flux had minimal correlation with soil water content. The soil total organic C density at all sites was significantly different and decreased as follows: moss &gt; lichen &gt; algal &gt; control; moreover, it decreased with soil depth at all sites. The accumulation of desert soil organic C could enhance soil C emissions.</p><h3>Conclusion</h3><p>In a semi-arid desert, artificial planting could promote sand fixation and BSCs succession; therefore, increasing the C storage capacity of desert soils and decreasing soil C emissions could alter the C cycle pattern in desert ecosystems. Soil temperature is the major factor controlling desert soil CO<sub>2</sub> flux and vegetation restoration, and BSCs development could alter the response patterns of C emissions to moisture conditions in desert soils. The results provide a scientific basis for studying the C cycle in desert ecosystems.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"16 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439077/pdf/","citationCount":"0","resultStr":"{\"title\":\"Changes in soil carbon sequestration and emission in different succession stages of biological soil crusts in a sand-binding area\",\"authors\":\"Bo Wang,&nbsp;Jing Liu,&nbsp;Xin Zhang,&nbsp;Chenglong Wang\",\"doi\":\"10.1186/s13021-021-00190-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>We investigated the spatio-temporal dynamics of soil carbon dioxide (CO<sub>2</sub>)- and soil methane (CH<sub>4</sub>)-flux during biological soil crust (BSCs) deposition in a sand-binding area in the eastern Chinese Hobq Desert. The trends in soil organic carbon (C) content and density were analyzed during this process. The sampling sites comprised a mobile dune (control) and those with algal, lichen, and moss crust-fixed sands. The desert soil CO<sub>2</sub>- and CH<sub>4</sub>-flux, temperature, and water content were measured from May to October in 2017 and 2018. Simultaneously, organic C content and density were measured and analyzed by stratification.</p><h3>Results</h3><p>The spatio-temporal variation in desert soil CO<sub>2</sub>-flux was apparent. The average CO<sub>2</sub>- fluxes in the control, algal, lichen, and moss sites were 1.67, 2.61, 5.83, and 6.84 mmol m<sup>−2</sup> h<sup>−1</sup>, respectively, during the growing season, and the average CH<sub>4</sub>-fluxes in the four sites were − 1.13, − 1.67, − 3.66, and − 3.77 µmol m<sup>−2</sup> h<sup>−1</sup>, respectively. Soil temperature was significantly positively correlated with CO<sub>2</sub>-flux but could not influence CH<sub>4</sub> absorption, and C flux had minimal correlation with soil water content. The soil total organic C density at all sites was significantly different and decreased as follows: moss &gt; lichen &gt; algal &gt; control; moreover, it decreased with soil depth at all sites. The accumulation of desert soil organic C could enhance soil C emissions.</p><h3>Conclusion</h3><p>In a semi-arid desert, artificial planting could promote sand fixation and BSCs succession; therefore, increasing the C storage capacity of desert soils and decreasing soil C emissions could alter the C cycle pattern in desert ecosystems. Soil temperature is the major factor controlling desert soil CO<sub>2</sub> flux and vegetation restoration, and BSCs development could alter the response patterns of C emissions to moisture conditions in desert soils. The results provide a scientific basis for studying the C cycle in desert ecosystems.</p></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439077/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-021-00190-7\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-021-00190-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景我们研究了中国东部霍布克沙漠风沙区生物土壤板结沉积过程中土壤二氧化碳(CO2)和土壤甲烷(CH4)外流的时空动态。分析了这一过程中土壤有机碳(C)含量和密度的变化趋势。采样点包括移动沙丘(对照)和藻类、地衣和苔藓结壳固定沙丘。在2017年和2018年的5月至10月期间,测量了沙漠土壤的二氧化碳和甲烷通量、温度和含水量。结果沙漠土壤二氧化碳通量的时空变化明显。在生长季节,对照地、藻类地、地衣地和苔藓地的平均二氧化碳通量分别为 1.67、2.61、5.83 和 6.84 mmol m-2 h-1,四个地点的平均甲烷通量分别为 - 1.13、- 1.67、- 3.66 和 - 3.77 µmol m-2 h-1。土壤温度与二氧化碳通量呈明显的正相关,但不影响对甲烷的吸收,而碳通量与土壤含水量的相关性很小。所有地点的土壤总有机碳密度均有明显差异,且随着苔藓、地衣、藻类和对照组的增加而减少;此外,所有地点的土壤总有机碳密度均随着土壤深度的增加而减少。结论 在半干旱荒漠中,人工种植可促进固沙和BSCs演替,因此提高荒漠土壤的C储存能力和减少土壤C排放量可改变荒漠生态系统的C循环模式。土壤温度是控制沙漠土壤二氧化碳通量和植被恢复的主要因素,而BSCs的发展可改变沙漠土壤中C排放对水分条件的响应模式。这些结果为研究沙漠生态系统的碳循环提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changes in soil carbon sequestration and emission in different succession stages of biological soil crusts in a sand-binding area

Background

We investigated the spatio-temporal dynamics of soil carbon dioxide (CO2)- and soil methane (CH4)-flux during biological soil crust (BSCs) deposition in a sand-binding area in the eastern Chinese Hobq Desert. The trends in soil organic carbon (C) content and density were analyzed during this process. The sampling sites comprised a mobile dune (control) and those with algal, lichen, and moss crust-fixed sands. The desert soil CO2- and CH4-flux, temperature, and water content were measured from May to October in 2017 and 2018. Simultaneously, organic C content and density were measured and analyzed by stratification.

Results

The spatio-temporal variation in desert soil CO2-flux was apparent. The average CO2- fluxes in the control, algal, lichen, and moss sites were 1.67, 2.61, 5.83, and 6.84 mmol m−2 h−1, respectively, during the growing season, and the average CH4-fluxes in the four sites were − 1.13, − 1.67, − 3.66, and − 3.77 µmol m−2 h−1, respectively. Soil temperature was significantly positively correlated with CO2-flux but could not influence CH4 absorption, and C flux had minimal correlation with soil water content. The soil total organic C density at all sites was significantly different and decreased as follows: moss > lichen > algal > control; moreover, it decreased with soil depth at all sites. The accumulation of desert soil organic C could enhance soil C emissions.

Conclusion

In a semi-arid desert, artificial planting could promote sand fixation and BSCs succession; therefore, increasing the C storage capacity of desert soils and decreasing soil C emissions could alter the C cycle pattern in desert ecosystems. Soil temperature is the major factor controlling desert soil CO2 flux and vegetation restoration, and BSCs development could alter the response patterns of C emissions to moisture conditions in desert soils. The results provide a scientific basis for studying the C cycle in desert ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Balance and Management
Carbon Balance and Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.60
自引率
0.00%
发文量
17
审稿时长
14 weeks
期刊介绍: Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.
期刊最新文献
Urban land use optimization prediction considering carbon neutral development goals: a case study of Taihu Bay Core area in China Slowly getting there: a review of country experience on estimating emissions and removals from forest degradation Methane cycling in temperate forests Stand structure and Brazilian pine as key determinants of carbon stock in a subtropical Atlantic forest Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1