{"title":"不列颠哥伦比亚省林产品产业的内向型生物经济战略与外向型生物经济战略:从伐木制品碳储存和排放的角度看问题","authors":"Sheng H. Xie, Werner A. Kurz, Paul N. McFarlane","doi":"10.1186/s13021-021-00193-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>British Columbia’s (BC) extensive forest resources provide climate change mitigation opportunities that are available to few other jurisdictions. However, as a consequence of the Mountain Pine Beetle outbreak and large-scale wildfires, BC is anticipating reduced roundwood harvest for the next decades. Progress towards more climatically efficient utilization of forest resources is needed. This research quantitatively compared the greenhouse gas emission consequences of nine harvested wood products trade and consumption strategies. Inward-focused strategies use wood products within Canada to achieve emission reduction objectives, while outward-focused strategies encourage exports of wood products.</p><h3>Results</h3><p>In the business-as-usual baseline scenario, average emissions arising from BC-originated harvested wood products between 2016 and 2050 were 40 MtCO<sub>2</sub>e yr<sup>−1</sup>. The estimated theoretical boundaries were 11 MtCO<sub>2</sub>e yr<sup>−1</sup> and 54 MtCO<sub>2</sub>e yr<sup>−1</sup>, under the scenarios of using all harvests for either construction purposes or biofuel production, respectively. Due to the constrained domestic market size, inward-focused scenarios that were based on population and market capacity achieved 0.3–10% emission reductions compared to the baseline. The international markets were larger, however the emissions varied substantially between 68% reduction and 25% increase depending on wood products’ end uses.</p><h3>Conclusions</h3><p>Future bioeconomy strategies can have a substantial impact on emissions. This analysis revealed that from a carbon storage and emission perspective, it was better to consume BC’s harvests within Canada and only export those products that would be used for long-lived construction applications, provided that construction market access beyond the US was available. However, restricting export of wood products destined for short-lived uses such as pulp and wood pellets would have significant economic and social impacts. On the other hand, inward-focused strategies had a small but politically and environmentally meaningful contribution to BC’s climate action plan. This study also revealed the conflicts between a demand-driven bioeconomy and targeted environmental outcomes. A hierarchical incentive system that could co-exist with other market drivers may help achieve emission reduction goals, but this would require a better quantitative understanding of wood products’ substitution effects. While the analyses were conducted for BC, other regions that are net exporters of wood products may face similar issues.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"16 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466961/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inward- versus outward-focused bioeconomy strategies for British Columbia’s forest products industry: a harvested wood products carbon storage and emission perspective\",\"authors\":\"Sheng H. Xie, Werner A. Kurz, Paul N. McFarlane\",\"doi\":\"10.1186/s13021-021-00193-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>British Columbia’s (BC) extensive forest resources provide climate change mitigation opportunities that are available to few other jurisdictions. However, as a consequence of the Mountain Pine Beetle outbreak and large-scale wildfires, BC is anticipating reduced roundwood harvest for the next decades. Progress towards more climatically efficient utilization of forest resources is needed. This research quantitatively compared the greenhouse gas emission consequences of nine harvested wood products trade and consumption strategies. Inward-focused strategies use wood products within Canada to achieve emission reduction objectives, while outward-focused strategies encourage exports of wood products.</p><h3>Results</h3><p>In the business-as-usual baseline scenario, average emissions arising from BC-originated harvested wood products between 2016 and 2050 were 40 MtCO<sub>2</sub>e yr<sup>−1</sup>. The estimated theoretical boundaries were 11 MtCO<sub>2</sub>e yr<sup>−1</sup> and 54 MtCO<sub>2</sub>e yr<sup>−1</sup>, under the scenarios of using all harvests for either construction purposes or biofuel production, respectively. Due to the constrained domestic market size, inward-focused scenarios that were based on population and market capacity achieved 0.3–10% emission reductions compared to the baseline. The international markets were larger, however the emissions varied substantially between 68% reduction and 25% increase depending on wood products’ end uses.</p><h3>Conclusions</h3><p>Future bioeconomy strategies can have a substantial impact on emissions. This analysis revealed that from a carbon storage and emission perspective, it was better to consume BC’s harvests within Canada and only export those products that would be used for long-lived construction applications, provided that construction market access beyond the US was available. However, restricting export of wood products destined for short-lived uses such as pulp and wood pellets would have significant economic and social impacts. On the other hand, inward-focused strategies had a small but politically and environmentally meaningful contribution to BC’s climate action plan. This study also revealed the conflicts between a demand-driven bioeconomy and targeted environmental outcomes. A hierarchical incentive system that could co-exist with other market drivers may help achieve emission reduction goals, but this would require a better quantitative understanding of wood products’ substitution effects. While the analyses were conducted for BC, other regions that are net exporters of wood products may face similar issues.</p></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466961/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-021-00193-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-021-00193-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Inward- versus outward-focused bioeconomy strategies for British Columbia’s forest products industry: a harvested wood products carbon storage and emission perspective
Background
British Columbia’s (BC) extensive forest resources provide climate change mitigation opportunities that are available to few other jurisdictions. However, as a consequence of the Mountain Pine Beetle outbreak and large-scale wildfires, BC is anticipating reduced roundwood harvest for the next decades. Progress towards more climatically efficient utilization of forest resources is needed. This research quantitatively compared the greenhouse gas emission consequences of nine harvested wood products trade and consumption strategies. Inward-focused strategies use wood products within Canada to achieve emission reduction objectives, while outward-focused strategies encourage exports of wood products.
Results
In the business-as-usual baseline scenario, average emissions arising from BC-originated harvested wood products between 2016 and 2050 were 40 MtCO2e yr−1. The estimated theoretical boundaries were 11 MtCO2e yr−1 and 54 MtCO2e yr−1, under the scenarios of using all harvests for either construction purposes or biofuel production, respectively. Due to the constrained domestic market size, inward-focused scenarios that were based on population and market capacity achieved 0.3–10% emission reductions compared to the baseline. The international markets were larger, however the emissions varied substantially between 68% reduction and 25% increase depending on wood products’ end uses.
Conclusions
Future bioeconomy strategies can have a substantial impact on emissions. This analysis revealed that from a carbon storage and emission perspective, it was better to consume BC’s harvests within Canada and only export those products that would be used for long-lived construction applications, provided that construction market access beyond the US was available. However, restricting export of wood products destined for short-lived uses such as pulp and wood pellets would have significant economic and social impacts. On the other hand, inward-focused strategies had a small but politically and environmentally meaningful contribution to BC’s climate action plan. This study also revealed the conflicts between a demand-driven bioeconomy and targeted environmental outcomes. A hierarchical incentive system that could co-exist with other market drivers may help achieve emission reduction goals, but this would require a better quantitative understanding of wood products’ substitution effects. While the analyses were conducted for BC, other regions that are net exporters of wood products may face similar issues.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.