Claus Schwechheimer, Peter Michael Schröder, Crysten E Blaby-Haas
{"title":"植物GATA因子:生物学、系统发育和系统基因组学。","authors":"Claus Schwechheimer, Peter Michael Schröder, Crysten E Blaby-Haas","doi":"10.1146/annurev-arplant-072221-092913","DOIUrl":null,"url":null,"abstract":"<p><p>GATA factors are evolutionarily conserved transcription factors that are found in animals, fungi, and plants. Compared to that of animals, the size of the plant GATA family is increased. In angiosperms, four main GATA classes and seven structural subfamilies can be defined. In recent years, knowledge about the biological role and regulation of plant GATAs has substantially improved. Individual family members have been implicated in the regulation of photomorphogenic growth, chlorophyll biosynthesis, chloroplast development, photosynthesis, and stomata formation, as well as root, leaf, and flower development. In this review, we summarize the current knowledge of plant GATA factors. Using phylogenomic analysis, we trace the evolutionary origin of the GATA classes in the green lineage and examine their relationship to animal and fungal GATAs. Finally, we speculate about a possible conservation of GATA-regulated functions across the animal, fungal, and plant kingdoms.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"73 ","pages":"123-148"},"PeriodicalIF":21.3000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Plant GATA Factors: Their Biology, Phylogeny, and Phylogenomics.\",\"authors\":\"Claus Schwechheimer, Peter Michael Schröder, Crysten E Blaby-Haas\",\"doi\":\"10.1146/annurev-arplant-072221-092913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>GATA factors are evolutionarily conserved transcription factors that are found in animals, fungi, and plants. Compared to that of animals, the size of the plant GATA family is increased. In angiosperms, four main GATA classes and seven structural subfamilies can be defined. In recent years, knowledge about the biological role and regulation of plant GATAs has substantially improved. Individual family members have been implicated in the regulation of photomorphogenic growth, chlorophyll biosynthesis, chloroplast development, photosynthesis, and stomata formation, as well as root, leaf, and flower development. In this review, we summarize the current knowledge of plant GATA factors. Using phylogenomic analysis, we trace the evolutionary origin of the GATA classes in the green lineage and examine their relationship to animal and fungal GATAs. Finally, we speculate about a possible conservation of GATA-regulated functions across the animal, fungal, and plant kingdoms.</p>\",\"PeriodicalId\":8335,\"journal\":{\"name\":\"Annual review of plant biology\",\"volume\":\"73 \",\"pages\":\"123-148\"},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-arplant-072221-092913\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-072221-092913","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Plant GATA Factors: Their Biology, Phylogeny, and Phylogenomics.
GATA factors are evolutionarily conserved transcription factors that are found in animals, fungi, and plants. Compared to that of animals, the size of the plant GATA family is increased. In angiosperms, four main GATA classes and seven structural subfamilies can be defined. In recent years, knowledge about the biological role and regulation of plant GATAs has substantially improved. Individual family members have been implicated in the regulation of photomorphogenic growth, chlorophyll biosynthesis, chloroplast development, photosynthesis, and stomata formation, as well as root, leaf, and flower development. In this review, we summarize the current knowledge of plant GATA factors. Using phylogenomic analysis, we trace the evolutionary origin of the GATA classes in the green lineage and examine their relationship to animal and fungal GATAs. Finally, we speculate about a possible conservation of GATA-regulated functions across the animal, fungal, and plant kingdoms.
期刊介绍:
The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.